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Fig. 1: Experimental Set-Up for verification of the negative greenhouse effect.   
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Preface  

The objective of this journal is to publish peer-reviewed scientific contributions in the broad field 
of climate sciences. But different to many other journals we also accept research articles, essays 
and commentaries, which contradict the often very unilateral climate hypotheses of the IPCC and 
thus open the view to alternative interpretations of climate change.  

The journal is a non-profit venture, in the start-up phase hosted and strongly supported by the 
Norwegian Climate Realists. Also, other climate organizations and their members support the 
journal with qualified publications or their engagement as co-editors and reviewers. 

However, to be internationally better recognized as a largely independently operating journal, 
with the beginning of 2025 SCC is published by the SCC Publishing association.  

In 2021 the journal started in the classical format, but since 2022 it is operating as an Open Access 
Journal with very moderate publication fees, with a new layout and new website. Since 2021 SCC 
could publish 5 volumes, consisting of 18 sub-volumes, mainly covering research articles, review 
articles, essays and discussion papers but also conference summaries and book reviews.  

Within less than five years SCC could develop to an internationally recognized Journal of Climate 
Sciences presenting alternative views for a much broader discussion and understanding of climate 
phenomena.  

We thank all authors for their important contributions over recent years, and we are particularly 
grateful to our Co-Editors, our Secretary, the many unnamed Reviewers and the Extended Board 
for their very trustworthy and productive cooperation over the last years. 

With the end of 2025 the responsibility as Chief-Editor passes to Prof. Nikolaos Malamos.  

SCC tries to continue its successful work on the wide field of climate sciences and at the same 
time to gain further experts, who can strengthen the editorial work and support our objectives. 

 

  Stein Bergsmark             Hermann Harde 

 (SCC Publishing)                (Departing Editor-in-Chief)  
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Editorial 

Volume 5 consists of two regular issues 5.1 and 5.3 with publications over the first and second 
half of 2025 and two extra issues 5.2 and 5.4.  

Sub-volume 5.2 is a Reprint of Pattern Recognition in Physics (Special Issue 1 2013/14) – Pattern 
in Solar Variability, their Planetary Origin and Terrestrial Impacts. 

Sub-volume 5.4 collects the Proceedings of the 6th Nordic Climate Conference in Oslo-
Gardermoen (August 3031, 2025): “The Climate Knowledge Crisis – how does it impact Free-
dom of Speech, Journalism, Climate Science and Politics?” 

The actual issue 5.3 covers all publications accepted within the period July to December 2025. It 
contains 7 research articles, one review paper, one essay and one commentary: 

 In 2 consecutive articles Michael Schnell and Hermann Harde describe the first experimental 
verification of the negative greenhouse effect in the laboratory. With a specially designed set-
up they investigate the gases water vapor, CO2, CH4, N2O, and Freon 134a at varying concen-
trations between 1–8% in air and at normal pressure. The radiation emitted by the gases is 
detected against a larger background radiation originating from the cylinder walls. All gases 
show strong saturation effects with increasing concentration. The measurements can be well 
reproduced by corresponding radiation transfer calculations. A clear influence of water vapor 
on the other gases is also evident as increased background radiation and partial spectral super-
position with these gases, which appears as attenuated emission of these gases. Likewise, with 
increasing radiation—particularly for the stronger greenhouse gases—simultaneous cooling of 
the gases across the cylinder volume can be observed. This is explained by conversion of ki-
netic and thus thermal energy into radiation, which represents a negative greenhouse effect. 

 Ronald Grabyan investigates whether atmospheric CO₂ precedes or lags global temperature 
changes over the past 2000 yr, using both visual and statistical analyses. A parallel evaluation 
of Total Solar Irradiance (TSI) and temperature is conducted to assess the influence of solar 
forcing on climate variability. Results show that atmospheric CO₂ consistently lags tempera-
ture by approximately 150 yr from 1 to 1850 AD, suggesting it functions as a response variable 
rather than a primary forcing. TSI–temperature correlations are generally strong across the full 
2000 yr interval, and very strong from 1850 to present, supporting the hypothesis that solar 
variability plays a significant role in long-term climate change. 

 Ad Huijser analyzes the Earth’s climate system as a subsystem of the broader Earth Thermal 
System, allowing for the application of a "virtual balance" approach to distinguish between 
anthropogenic and other, natural contributions to global warming. Satellite-based Top Of the 
Atmosphere (TOA) radiation data from the CERES program (since 2000), in conjunction with 
Ocean Heat Content (OHC) data from the ARGO float program (since 2004), indicate that 
natural forcings must also play a significant role. Specifically, the observed warming aligns 
with the net increase in incoming shortwave solar radiation (SWIN), likely due to changes in 
cloud cover and surface albedo. Arguments suggesting that the SWIN trend is merely a feed-
back response to GHG-induced warming are shown to be quantitatively insufficient. This anal-
ysis concludes that approximately two-thirds of the observed global warming must be at-
tributed to natural factors that increase incoming solar radiation, with only one-third attribut-
able to rising GHG-concentrations. These findings imply a much lower climate sensitivity than 
suggested by IPCC-endorsed Global Circulation Models. 

 Frans Schrijver evaluates in his paper whether CO₂ levels during historical periods of similar 
or more greenness as today, are consistent with the widely held view that CO₂ levels remained 
below 300 ppm over the past 800,000 years, as indicated by Antarctic ice core records. Em-
ploying Mitscherlich’s Law, the research models the global Gross Primary Production (GPP) 
response to increasing CO₂, based on the mean value of eight different long-term GPP datasets. 
It illustrates a diminishing return of vegetation associated with rising CO₂, as additional factors 
such as nutrient and water availability impose constraints on the fertilization effect. Due to this 
diminishing return the average residence time of CO₂ in the atmosphere increases significantly 
with higher GPP values. High CO₂ levels, similar to today's, were therefore necessary for com-
parable GPP during green periods like 10,000 years ago. A CO₂ concentration of 280 ppm  
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would only be possible, if nature’s response to CO₂ were fundamentally different from what 
we observe today, with other constraining factors exceptionally more favorable. Natural fluc-
tuations of the atmospheric CO₂ concentration can be well explained, based on the strong tem-
perature dependence of the degeneration of carbon compounds that are stored in large quanti-
ties in the soil and the oceans. 

 Les Coleman adopts a statistical approach that examines warming from the perspective of a 
researcher in financial markets. The principal finding is that the central hypothesis of Anthro-
pogenic Climate Change (ACC) seems spurious, and due to simultaneous rises in global tem-
perature and atmospheric CO2 which independently follow unrelated, time trending variables. 
ACC is further questioned by the existence of joint test and missing variables problems. Ex-
ploring CO2’s limited ability to explain warming by incorporating unsuspected forcers shows 
that humidity leads temperature and explains most of its increase; further, oceanic oscillations 
and cereal production are stronger explanators of temperature than CO2. This statistically-
based study adds value to existing physics-based climate models through a complementary 
analytical perspective that tests the robustness of models to real world data. It concludes that 
human activity is contributing to global warming, but herding around the forcing role of carbon 
combustion has seen its influence exaggerated. This has obvious implications for the effec-
tiveness of decarbonization as a policy to manage global warming. 

 In their Review Article Camille Veyres, Jean-Claude Maurin and Patrice Poyet conclude from 
independent observations and reports that the stock-to-outflow ratio of CO₂ molecules in the 
atmosphere is about five years. Accordingly, only about 5.5% of the atmospheric CO₂ stock 
comes from fossil fuel emissions not yet absorbed by vegetation or oceans, while 94.5% orig-
inates from natural outgassing of oceans and soils. This interpretation is supported by the δ¹³C 
record at Mauna Loa Observatory (MLO). The 50% increase in vegetation productivity since 
1900 can be attributed to higher atmospheric CO₂ concentrations and a longer growing season. 
Decarbonization policies may therefore affect only 5.5% of atmospheric CO₂. Moreover, the 
strong month-by-month correlation, over nearly 800 months, between the increments of the 
CO₂ stock at MLO (altitude 3.4 km) and the sea-surface temperature (SST) anomaly in the 
inter-tropical zone shows that 94.5% of atmospheric CO₂ reflects the time-integrated effect of 
past surface temperatures, themselves determined by surface insolation. Simple models of car-
bon fluxes and stocks for the oceans, atmosphere, and vegetation & soils, assuming ocean 
degassing driven by inter-tropical SST, reproduce the observed time series atmospheric CO₂, 
δ¹³C and vegetation productivity since 1900. In this context, IPCC theories and models based 
on concepts such as the Airborne Fraction, the Bern function, an adjustment time or a Revelle 
buffer factor, appear to be misleading constructs. 

 Antero Ollila studies the impact of Water Vapor (WV) on global warming. In General Circu-
lation Models (GCMs) the positive feedback of WV is the basic feature, which approximately 
doubles the warming impacts of any other climate drivers. However, simple climate models 
without this feature already show that they can simulate the temperatures of the 2000s very 
well. On the other hand, the observed humidity observations reveal that they vary, but not 
according to the water feedback theory. In this study, the radiative forcing (RF) value of WV 
for different atmospheric water amounts has been calculated by applying the line-by-line 
(LBL) method. A simple climate model by the author has been modified by implementing this 
dependency in the same way as for the other greenhouse (GH) gases. This model has been 
used for the simulations of absolute yearly temperature and humidity changes, as well as for 
decadal-long changes by applying CERES (Clouds and the Earth's Radiant Energy System) 
observations. These simulations reveal that humidity increases are strongly related to the pri-
mary energy changes of the absorbed solar radiation (ASR). The yearly temperature variations 
of the hemispheres show that water vapor increase has about a 14 % temperature impact and 
not about 100 % as assumed by the water feedback theory.  

 In an Essay Raimund Müller considers the diverging concepts for the global CO2 absorption/ 
emission in the various reservoirs, which significantly deviate in their respective residence 
times. He assumes that there exists a regular exchange of CO2 between the reservoirs, both in 
terms of absorption and emission. Without anthropogenic emissions, absorption and emission 
balance each other. Consequently he follows, the same happens with any additional amount of 
CO2 introduced into the system: it is distributed in a constant ratio among the reservoirs. 
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 Finally, this issue contains a Commentary from Anthony Sadar, which is a conflation and re-
vision of the author’s essays previously published in the American Thinker and the Washington 
Times. To counter climate anxiety, this treatise reflects the limited predictions of climate mod-
els, particularly the atmosphere’s temperature profile, where models are not merely uncertain 
but also show a common warming bias relative to observations. Also, regarding the physics, 
how precipitation will change with warming is not sufficiently understood. This suggests that 
models can seriously misrepresent certain fundamental feedback processes. 

We hope the above contributions will stimulate our readers to a further critical discussion of cli-
mate science, and we wish interesting reading 

 

Tallinn/Hamburg, December 31, 2025.      Hermann Harde 

        (Editor-in-Chief) 
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The Negative Greenhouse Effect – Part I:  

Experimental Studies with a Common Laboratory Set-Up 

Michael Schnell 1 , Hermann Harde 2  

1 Ex Academy of Science of GDR, Berlin, Germany 
2 Helmut-Schmidt-University, Hamburg, Germany 

 
Abstract 

In two consecutive studies, the suitability of different experimental set-ups for detecting and 
measuring the emission of infrared-active gases is investigated, as this is of particular importance 
for understanding the atmospheric greenhouse effect. 

The first part presents a horizontally arranged Styrofoam box, as described occasionally in the 
literature for such experiments. The gases are slightly heated by a heater at the bottom of the 
container, and the radiation—emitted by the infrared-active gases—is detected through an infra-
red-transparent window at the side. However, this arrangement is only suitable for demonstrating 
the positive or negative greenhouse effect with very strong greenhouse gases such as Freon. For 
weaker greenhouse gases like CO2 or CH4, the gas radiation can only be inadequately distin-
guished from the broadband background radiation of the container walls. In addition, the supplied 
heating power creates a circular air flow, which further complicates detection. Nevertheless, these 
investigations provide important clues for a significantly improved setup in the form of a vertical 
aluminum cylinder, which can be used to detect infrared emission under conditions such as those 
observed in the lower troposphere. 

For a gas layer above a cooler surface, as this occurs during inversion weather conditions or can 
be observed in the Arctica and Antarctica during winter months, the radiation emitted by the 
surface and partially absorbed by the warmer gas layer is lower than the radiation emitted by the 
gas upward. This is known as negative greenhouse effect, which, despite the limited detection 
sensitivity, can be simulated for the first time in the laboratory with the presented set-up.  

Keywords: Infrared-active gases; positive and negative greenhouse effect. 

Submitted: 2025-06-12, Accepted 2025-08-19. https://doi.org/10.53234/scc202510/02 

1. Introduction 

Infrared-active gases such as water vapor (WV) or carbon dioxide (CO2), along with convection 
and evaporation, significantly determine the vertical energy transfer in the atmosphere. Whether 
these gases primarily contribute to warming or cooling depends largely on the sign of the vertical 
temperature gradient over the atmosphere. In the troposphere, the lowest layer of the atmosphere, 
the temperature on average drops by 6.5°C/km. In this case, the radiation emitted into space by 
the infrared(IR)-active gases is lower than the radiation absorbed by them from the Earth's sur-
face. This is known as atmospheric Greenhouse Effect (GHE)1. The reduced radiation at the Top 
of the Atmosphere (TOA) thus leads to additional warming and an increase of the long-wave 
radiation emitted from the Earth's surface. This happens, until—together with the directly 

 
1 Although the terms greenhouse gases and greenhouse effect are somewhat misleading and should be re-
placed by designations like IR-active gases and atmospheric radiative effect (see also Koutsoyiannis &  
Tsakalias, 2025 [1]), here we still use the conventional terminology as established over 150 years. 
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absorbed solar radiation—an equilibrium is adjusted between the energy supply and removal at 
TOA. 

However, in some parts of the troposphere, the temperature gradient can also be reversed, e.g., 
during inversion weather conditions or during the winter months in central parts of the Arctic and 
Antarctic. During these winter months, the surface of the poles can be colder than the troposphere, 
which is warmed by currents from the equator to higher latitudes, thus potentially reversing the 
GHE (see Schmithüsen et al., 2015 [2]). Then the radiation emitted by the warmer air is more 
intense than the thermal radiation coming from the Earth's surface and absorbed in the atmos-
phere. 

However, one of the most common objections against the GHE–whether positive or negative–is 
that the IR-active molecules under the conditions of the lower atmosphere transfer the absorbed 
radiation energy almost completely to other air molecules, known as thermalization, and accord-
ing to physical reasons suppress any gas emission. 

The "thermalization" hypothesis was already refuted in a previous study by laboratory experi-
ments (Harde & Schnell, 2022 [3]). Our actual experiments show, in agreement with theoretical 
considerations (Harde, 2013 [4]) that IR-active gases can also draw their radiation energy from 
the kinetic energy of the gas mixture, thereby lowering the temperature of the gas. 

Such an effect can only be observed experimentally, if a heated gas container is in radiation ex-
change with a cooled radiation receiver, and the radiation emitted by the container walls is weaker 
than the gas radiation of the Greenhouse-Gases (GH-gases). This requires container walls made 
of polished metal, which have extremely low emission coefficients. Under this condition, addition 
of a GH-gas leads to an increase in IR radiation while simultaneously cooling the gas volume. 
This corresponds to conditions as found for a negative GHE. Such conditions can directly be 
replicated in the laboratory with a set-up as presented in Section 2 (for further details of an im-
proved set-up see: Harde & Schnell, 2025, Part II [5], Subsection 4.4). 

An unexpected air circulation in the set-up is discussed in Section 3, and despite some limitations 
in the sensitivity, we can demonstrate in Section 4 that GH-gases not only emit in higher altitudes 
but also under conditions similar to those in the lower troposphere, while deriving their radiation 
energy from the gas's kinetic energy. The decreasing gas temperature and altered distribution also 
lead to a slightly reduced wall temperature and thus cooling at constant heating power. The par-
ticular challenge, however, lies in detecting the increased radiation component of the molecular 
bands against the broad background radiation, which clearly predominates due to the large surface 
area of the container walls. 

Our initial investigations using a horizontally positioned Styrofoam box were inspired by the ex-
periments of Seim and Olsen in 2023 [6]. The authors used such a set-up to verify our previous 
experiments on the CO2 GHE (Harde & Schnell, 2022 [3]). They found a slight temperature in-
crease with increasing CO2, but much smaller than expected. This could not be explained. 

It is likely that these deficiencies are due to the nature of the experimental set-up, which introduce 
unnecessary complications such as multiple reflections and air currents. Therefore, the first part 
of our investigations presented here, primarily addresses the question, how far such a box is really 
suitable for demonstrating a positive or negative greenhouse effect. 

In Part II, it is shown that with a vertical experimental setup—consisting of a cylinder with pol-
ished Aluminum walls—not only the negative GHE of the most important greenhouse gases water 
vapor (WD), CO2 , methane (CH4) and nitrous oxide (N2O) can be reliably detected, but it is also 
experimentally confirmed that water vapor can attenuate the effect of the other gases by superpo-
sition and saturation on the spectral bands (see also Harde, 2014 [7]). 

2. Experimental Set-Up 

Based on the experimental set-up of Seim and Olsen [6], a horizontally arranged, rectangular-
shaped Styrofoam box is used with the heating and temperature distribution in the box (Fig. 1). 
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    Fig. 1: Schematic experimental setup 

The air inside the box is slowly heated to 36°C by a floor heating. Every 5 minutes, four temper-
ature sensors T1 to T4 record the temperature profile inside the box and store the values in data 
loggers (see Appendix). 

The infrared radiation emanating from the inner surfaces of the box is directed outwards through 
a large opening in the right-hand wall onto a cooled plate PC at constant temperature TC. The 
cooled plate PC is an essential part of the experimental concept, because it creates an energy sink 
that enables a measurable energy flow by infrared radiation and/or heat conduction from the inside 
to the outside. 

The opening is sealed inside and out with two thin Polyethylene (PE) foils that allow infrared 
radiation to pass through but retain the sample gases and virtually eliminate mechanical heat con-
duction to the outside. 

If the box is filled with GH-gases, infrared radiation is generated by two sources: the radiation 
from the box's interior walls and the IR-active gases. GH-gases can only noticeably increase the 
emitted radiation intensity, if they generate a higher radiance on their absorption-emission bands 
than the inner walls. This requires the walls to have the lowest possible emissivity ε << 1. To 
ensure this, all interior surfaces of the box are covered with polished aluminum plates, so that 
these surfaces emit a significantly lower radiation intensity than a blackbody radiator. 

The radiation passing through the opening is detected by two independent detector systems lo-
cated on the cooled plate PC ( Fig. 2b). In the center of the plate is a blackened aluminum disc, 
separated from plate PC by 8 mm thick Styrofoam insulation . The disc reacts to IR radiation with 
a temperature increase, which is measured by the temperature sensor DT. In addition, four Peltier 
elements DP are glued directly to the PC plate. They generate a voltage in the mV range when there 
is a temperature difference between the top and bottom (Seebeck effect).  

 

Fig. 2: a) Styrofoam box in its raw state (without lid and aluminum plates on the side walls) with 
heating foil HB and radiation opening, b) detection of the IR radiation on the inside of the cooled 
plate PC with the temperature sensor DT and 4 Peltier elements DP before its blackening. 

a) b) 
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A DC amplifier and data logger is recording and storing the data. In this set-up, the temperature 
and voltage changes are purely qualitative parameters of the radiation flux to the PC plate and only 
represent trends for the investigations presented here. To derive the actual radiation intensities 
from these data, calibration is required, which is presented in Part II of this study [5]. 

The rear wall (left side) is covered with a polished or blackened aluminum plate PR and its tem-
perature TR is recorded by a data logger. Since only this plate is aligned plane-parallel to the plate 
PC, it can be used to demonstrate the radiation exchange with the cooled plate (see Section 3). 

3. A Metastable Air Circulation 

Without heating, all temperatures in the Styrofoam box are approximately 18°C, and the air is at 
rest. When the floor heating HB is switched on, the air warms up, initially creating a surprising 
temperature distribution. The sensor T1 has the highest temperature, and the rear wall PR – polished 
or blackened – has the lowest temperature: T1 > T2  > T3 > T4 > TR (Fig. 3). This phenomenon cannot 
be explained by heat conduction. Then, for T1 the exact opposite would be expected due to the 
large opening to the cooled sensors. 

The unusual temperature gradient is an indication that the heat is mainly dissipated by IR radia-
tion. Only the rear wall PR in the box is aligned plane-parallel to the cooled plate PC and thus can 
optimally exchange infrared radiation with the cooled plate PC. As a result, the temperature TR 

(green line) is up to 2°C lower than all other measuring points within the box, and the blackened 
rear wall is further 1.9°C colder than the polished rear wall (Fig. 3, Tab. 1). 

 
Fig. 3: Temperatures during heating of the Styrofoam box: a) Stop of the metastable air circulation 
by short-term ventilation at min 450, b) spontaneous stop of the air circulation without external 
intervention at min  330. Short-term ventilation in the stable state at min 450 has no effect on the 
temperature curve of the individual measuring points. 

The colder rear wall PR causes the adjacent air to flow downwards, creating counterclockwise air 
circulation in the box. The air passes the floor heating HB and absorbs additional heat, which is 
transferred to T1. Thus sensor T1 (blue line) becomes the warmest point in the box (Fig. 3, Table 
1). This phenomenon is a metastable air circulation that immediately stops when the internal fan 
is switched on for a short time. The fan then heats the rear wall, increasing its temperature TR by 
up to 1.5°C and eliminating the downward flow as the driving force of the air circulation. A new 
and now stable temperature gradient T4 ~ T3 > T2 > T1 is formed, which corresponds to the ex-
pected heat flow from the warm box to the cold plate PC. For the blackened back wall, the tem-
perature TR remains significantly below the air temperatures T1  T4 (Fig. 3a), while the polished 
back wall is close to the air temperatures T1  T4 (Fig. 3b). 

With the polished back wall, from beginning the temperature TR is higher than with the blackened 
wall, so that the abnormal air circulation can stop automatically after some time even without 
external influence (Fig. 3b). 

Air circulation has no or only a negligible influence on the energy transport to the plate PC, as can 
be seen from the sensors DP and DT (Fig. 3, Table 1). However, since air temperatures are an 

a) b) 



M. Schnell, H. Harde: The Negative Greenhouse Effect – Part I 

 Science of Climate Change https://scienceofclimatechange.org 
 5 
 

important indicator of a negative GHE, a stable circulation and temperature distribution must be 
established before adding a GH-gas. Therefore, the mini-fan in the box is switched on for 5 
minutes approximately 3 hours before adding a GH-gas to ensure that the stable condition is 
achieved (see Fig. 4, min 230). When stable circulation has already been established, the ventila-
tion has no influence on the temperatures, as shown in Fig. 3b. 

Table 1: Influence of air circulation on temperatures and energy transport, HB = 21 W. 

Condition TC TR T4 T3 T2 T1 DT DP 

the change °C °C °C °C °C °C °C V 

 Polished back panel: 

Metastable 18.0 33.9 35.3 35.6 35.7 36.0 21.6 1.70 

Stable 18.0 35.4 36.3 35.6 35.8 35.0 21.6 1.70 

difference 0.0 1.5 1.0 0.0 0.1 -1.0 0.0 0.0 

 Back wall blackened: 

Metastable 18.1 32.0 34.7 35.0 35.0 35.2 22.5 1.70 

Stable 18.1 32.9 35.6 36.0 35.1 34.3 22.6 1.73 

difference 0.0 0.9 0.9 1.0 0.1 -0.9 0.1 0.03 

4. Evidence of Gas Radiation and the Negative Greenhouse Effect 

Before starting an experiment as described in Section 2, the air in the Styrofoam box with the 
polished back wall is heated to 35 to 43 °C (heating power HB between 21 and 28 W), and a stable 
condition is ensured by ventilation. After further 200 minutes, the greenhouse gas is poured in 
near the floor using a mini pump with a rate of about 1 l/min. Then the gas and air are homoge-
nized for 5 minutes using the internal fan. The temperature changes measured 30 minutes before 
and after adding the GH-gas are used as averages of the recorded data (Table 2). As a control 
measurement, the IR-inactive noble gas argon is also examined to check whether mechanical heat 
conduction has an influence on the measurements. For the sake of simplicity, only data for the 
medium heating level HB = 25 W are shown in Fig. 4 and Table 2. 

 

  Fig. 4: Verification of the negative GHE with 2 vol.% Freon 134a, HB = 25 W. 
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Table 2: Influence of sample gases on temperatures and IR radiation, HB = 25 W 

Gas  
Vol.-% 

ΔTC  
°C 

ΔTR  
°C 

ΔT4  
°C 

ΔT3  
°C 

ΔT2  
°C 

ΔT1  
°C 

ΔDT  
°C 

ΔDP  
V 

Freon 2% 0.0 -0.5 -0.4 -0.9 -0.9 -1.0 1.1 0.38 

N2O   2 % 0.0 -0.1 -0.3 -0.2 -0.2 -0.2 0.2 0.06 

CO2   2 % 0.0 -0.1 -0.1 0.0 -0.1 -0.1 0.2 0.07 

Argon 2% 0.0 0.1 0.0 0.1 0.0 0.1 0.0 0.00 

Argon 5% 0.0 0.1 0.0 0.1 0.0 0.0 0.0 0.00 

 

The addition of Freon 134a (1,1,1,2-tetrafluoroethane), a very strong greenhouse gas, leads to a 
significant increase in detectable radiation, which can be seen as increase of the measured values 
ΔDT and ΔDP. At the same time the air in the box cools down by up to 1.0°C.  

This counter-reaction is the result of molecular collisions, which lead to a continuous repopulation 
of excited rotational-vibrational states of the Freon molecules (see, e.g.: Harde, 2013, Subsection 
2.3 and 2.5 [4]). In this way the radiated energy due to spontaneous emission of the molecules 
occurs at the expense of the air's kinetic energy. Control measurements with Ar or He show no 
changes, so specific heat conduction can be ruled out for the measured temperature decrease.  

The observed temperature drop over the box is a clear indication of a negative GHE, which can 
be demonstrated with this experimental set-up in a laboratory and under normal pressure condi-
tions. 

However, for other IR-active gases such as CO2, CH4 or N2O, the described set-up only gives 
very weak or even no measurable radiation changes at the sensors or in the gas temperature. This 
shows, apparently, a simple Styrofoam box is not sufficiently suitable for detecting the GHE for 
these gases (Table 2). 

Furthermore, these studies show that a blackened back wall is counterproductive for detecting the 
negative GHE. To this end, the Freon measurements were repeated with both a polished and a 
blackened back wall PR at a heating HB = 21 W (Table 3). 

Table 3: Polished vs. blackened back panel, measured temperatures and radiation with respective 
changes when adding 2 vol.% Freon, HB = 21 W 

Adding  
Freon 

TR TC T4 T3 T2 T1 DT DP 

°C °C °C °C °C °C °C V 
 Polished back panel = Variant A 

Average 35.20 18.30  36.20 36.00 35.10 34.20 22.90 1.70 

the change -0.34 0.10 -0.36 -0.66 -0.79 -0.83 0.89 0.30 
 Back panel blackened = variant B 

Average 34.10 18.40 35.40 35.40 34.60 33.80 23.30  1.90 

the change 1.04 0.10 -0.36 -0.74 -0.70 -0.77 0.30 0.12 

Difference  
Var. B - A 

1.38 0.00 0.00 -0.09 0.09 0.06 -0.59 -0.17 

 

While the changes in air temperatures are almost identical, there are significant differences in the 
IR radiation (DT and DP). To understand this, one must examine the temperature changes ΔTR of 
the various back panels. The polished panel (variant A) largely reflects the Freon radiation, pre-
venting heat transfer and dissipating the heat output primarily through IR radiation to the PC plate. 
The slight temperature decrease ΔTR = -0.34 °C is caused by heat conduction to the cooler adja-
cent air layers. 
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In contrast, the blackened rear wall (variant B) absorbs the Freon radiation almost completely and 
thus experiences a significant temperature increase of ΔTR = 1.04 °C despite the cooled ambient 
air. As a result, part of the Freon radiation is converted into heat and partly disappears through 
the rear polystyrene wall to the room. This is lost as the IR radiation towards the PC plate with the 
sensors DT and DP and results in a lower increase for variant B than variant A. 

The experiment with the blackened back wall demonstrates, why proving the negative GHE is 
quite difficult and so far, has only been successful with the super GH-gas Freon. To detect the gas 
radiation of IR-active gases, the container and the GH-gases are both heating up. Even with pol-
ished walls and a small emission coefficient, due to the relatively large surface of a cuboid box it 
is difficult to distinguish the gas radiation from the background radiation of the container. There-
fore, the set-up with a Styrofoam box is not sensitive enough to clearly detect the relatively weak 
IR radiation from CO2 and nitrous oxide on this background. Especially a horizontal set-up with 
disruptive convection and multiple reflections is difficult to control. 

In contrast, a cylindrical, vertically mounted radiation channel with polished Al-walls can be used, 
not only to measure the negative GHE of CO2 and nitrous oxide, but also that of the weaker GH-
gas methane (Harde & Schnell, 2025, Part II [5]). 

5. Summary 

In this contribution we demonstrate that IR-active gases are transferred to excited states through 
thermal excitation and convert the kinetic energy of their surrounding into infrared radiation by 
spontaneous emission. Due to inelastic collisions in the gas mixture, the lost radiation energy is 
continuously extracted from the thermal energy of the gas and observed as a temperature drop in 
the compartment. The hypothesis that collision processes of the gases in the lower troposphere 
prevent IR emission and that greenhouse gases cannot generate back-radiation is thus once again 
refuted. 

However, with the presented set-up this effect could only clearly be demonstrated using the par-
ticularly potent greenhouse gas tetrafluoroethane (Freon 134a). Apparently, this limitation is 
caused by the set-up, consisting of a horizontally placed Styrofoam box, which is only partially 
suitable for radiation transfer. Multiple reflections of the infrared radiation from the parallel inte-
rior walls impede the radiation transfer to the cooled PC plate and are overlaid by the wall radia-
tion. Furthermore, the horizontal arrangement leads to complications due to the resulting air cir-
culation. Part II of this study [5] shows that these problems can be overcome with a vertically 
arranged cylindrical radiation channel with polished Al-walls. 
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Appendix 

The laboratory is thermostatted at 18 °C ± 0.3 °C to prevent perturbations caused by fluctuating 
room temperatures. 

To supply the HB heating foil, the current from the socket is stabilized at 230 V via a digital 
voltage regulator. It is then rectified by another digital voltage regulator and adjusted to the de-
sired heating output HB using a percentage setting from 52 to 70%. The hole (diameter Ø = 28.5 
cm) in the Styrofoam box is cut using an electric cutter. Commercially available aluminum plates 
are polished to a high gloss with polishing paste or blackened with "Matt Black" paint spray. Back 
panel = 36 x 32 cm, PC plate Ø = 41 cm, IR detector plate Ø = 16.7 cm. 

The housing for the IR detector is made of polystyrene wallpaper: length = 13 cm, outer diameter 
= 41 cm, inner diameter = 30 cm. The housing is connected to the front wall and the cooled PC 

plate by four threaded rods, leaving a 2 cm air gap between the box and the housing. 

The PE foils are glued to a wooden frame 37 x 33 cm and a hole with Ø = 29 cm and fixed to the 
front wall from both sides with silicone rubber. 

Table A1: Distances of the temperature measuring points from the front wall of the box 

Sensor TR T4 T3 T2 T1 TC DT DP 

Distance 
(cm) 

49 45 34 23 11.5 -20 -19.5 -19.5 

 

Table A2: Compilation of materials used. 

Device Source 

Styrofoam box = Thermobox 60 liters  
Internal dimensions: 49.0 x 37.0 x 33.0 cm  
External dimensions L/W/H: 57 x 45 x 41 cm 

Amazon/Terra Exotica 

Styrofoam plate for additional insulation of the 
lid 57 x 45 x 2 cm 

hardware store 

Heating foil 2x20 W NEKOSUKI reptile terrar-
ium heating mats 42 x 28 cm 

Amazon/Terra Exotica Terrarium 

PE film , cling film 45 cm x 300 m Amazon/Packaging Team 

Thermocouple TEC1 12706 12V 6A 40x40mm Amazon/ shenzhenshiyaoxingmaoyi 

Digital voltage regulator 4000W AC 220V SCR Amazon/ Luoyuuk 

Digital voltage regulator KEMOT SER-2000 Amazon 

Elitech Temperature Data Logger, RC-4 Amazon 
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Voltage data logger VOLTCRAFT VC-
11015505 DL-250V 

Conrad Electronic SE 

DC 3-12V iHaospace AD620 DC Power Ampli-
fier 

Amazon/ iHaospace 

Heat exchanger, ASHATA 120mm aluminum 
radiator 

Amazon/Richer-R123 

Fan Sunon 80 x 80 x 25mm Amazon/ kessler -electronic 

Mini fan 30 x 30 x 10mm Amazon/CHEER CHAMP 
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The Negative Greenhouse Effect – Part II:  

Studies of Infrared Gas Emission with an Advanced Experimental Set-Up  

Hermann Harde 1, Michael Schnell 2 

1 Helmut-Schmidt-University, Hamburg, Germany 
2 Ex Academy of Science of GDR, Berlin, Germany 

 

Abstract 

For our studies of the greenhouse gas emission – different to a simpler experimental set-up with 
a horizontally positioned Styrofoam box described in Part I – here we use an arrangement con-
sisting of a vertically placed cylinder with uniformly heated walls and an opening at the bottom, 
which is sealed by an infrared-transparent foil. Below this foil are two calibrated radiation sensors 
on a cooled plate, which measure the radiation emerging from the cylinder. At the same time, the 
temperature distribution in the container is recorded before and after adding a greenhouse gas. 

With this set-up we have investigated the gases water vapor, CO2, CH4, N2O, and Freon 134a at 
varying concentrations between 1–8% in air and at normal pressure. The radiation emitted by the 
gases can be detected against a larger background radiation originating from the cylinder walls. 
All gases show strong saturation effects with increasing concentration. The measurements can be 
well reproduced by corresponding radiation transfer calculations. A clear influence of water vapor 
on the other gases is also evident as increased background radiation and partial spectral superpo-
sition with these gases, which appears as attenuated emission of these gases. Likewise, with in-
creasing radiation—particularly for the stronger greenhouse gases—simultaneous cooling of the 
gases across the cylinder volume can be observed. This is explained by conversion of kinetic and 
thus thermal energy into radiation, which can escape through the infrared transparent foil. 

For a gas layer located above a cooler subsurface, as known from inversion weather conditions 
or as observed in the Arctic and Antarctic during the winter months, the radiant power emitted by 
the surface and partially absorbed by the warmer gas layer, is lower than the power emitted up-
ward. This corresponds to a negative greenhouse effect, which with the presented set-up can be 
reproduced for the first time in the laboratory.  

Keywords: Greenhouse effect; greenhouse gases; negative greenhouse effect. 

Submitted 2025-06-12, Accepted 2025-08-19; https://doi.org/10.53234/scc202510/03 

1. Introduction  

The main components of our atmosphere, nitrogen and oxygen, do not interact with the radiation 
emitted from the Earth's surface, radiation which is assigned to the mid-infrared (IR) spectral 
range (3 - 50 µm) and is also referred to as thermal radiation or simply heat radiation. It is undis-
puted that certain IR-active gases absorb this heat radiation, as demonstrated by numerous meas-
urements with these so-called Greenhouse-(GH)-gases. The spectra, with extensive data on tem-
perature dependence and pressure broadening due to collisions between these gases, are available 
in the HITRAN-database (Rothman et al, 2025 [1]). Critics of the Greenhouse Effect (GHE) dis-
agree that GH-gases can partially or even completely release the absorbed energy as IR emission. 
Opinions differ widely, although the physical basis for this was already developed in the middle 
and end of the 19th century (Kirchhoff, 1859 [2]; Clausius, 1887 [3]). 

One of the most common objections to IR emission of GH-gases is that under the conditions of 
the lower atmosphere, IR-active molecules transfer the absorbed radiation energy almost 
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completely to other air molecules via collision processes (thermalization), and the collisions pre-
vent any spontaneous emission, especially back-radiation to the Earth’s surface. 

In previous studies, we used a special apparatus to simulate the radiative transfer between the 
Earth's surface and a cloud layer at an altitude of 5-6 km (Harde & Schnell, 2022 [4]). We could 
show that GH-gases increase the temperature of a heated plate that is arranged plane-parallel to a 
cooled plate. These measurements allowed us to experimentally determine the radiative forcings 
ΔF2xGas for the gases carbon dioxide, nitrous oxide, and methane, which are in excellent agreement 
with Line-by-Line Radiation Transfer (LBL-RT) calculations. 

Using a modified set-up, in this contribution we investigate how the GH-gases water vapor (WV-
H2O), carbon dioxide (CO2), methane (CH4), nitrous oxide (N2O) and Freon 134a (1,1,1,2-tetra-
fluoroethane, CFH2CF3) can influence the temperature of a warmer air layer located above a 
cooler background – here a cooled plate. 

In contrast to the usual atmospheric GHE, which primarily affects the lower troposphere, with the 
new set-up there is only a heat flux from a warmer to a colder body. A violation of the second law 
of thermodynamics [3], as often cited by critics, is thus per se ruled out. 

It is shown that even at normal pressure GH-gases act as emitters, and in their presence an addi-
tional heat flow is generated by radiative exchange. Since the energy for this heat transport is 
extracted from the direct environment, a negative GHE occurs (see Section 4.4), which cools the 
air and simultaneously increases the heat flow dissipated by radiation. If the GH-gases were pure 
absorbers, they could only increase the air temperature, what is not observed. 

Heat transport by IR radiation requires that IR-active gases absorb energy through inelastic colli-
sions with nitrogen and oxygen molecules at the expense of the kinetic energy of their surround-
ings and release this energy as IR radiation, thus enabling continuous emission (Harde, 2013 [5]). 

However, the experimental detection of gas radiation in the laboratory is anything but simple (see 
also: Schnell & Harde, 2025 [6]), as a gas can't simply be placed in an empty space; this always 
requires a container to enclose the gas. Despite the use of inner walls with a particularly low 
emissivity ε, such containers (hereafter referred to as cylinders) emit IR radiation that is some-
times significantly more intense than the gases, which can only be detected on a higher back-
ground. Therefore, only that fraction of the gas radiation can be measured, which has a higher 
intensity at a specific wavelength than the background radiation of the container. Like an iceberg, 
only a portion of the gas radiation is visible due to this superposition. 

This issue requires some preparatory studies of the set-up before investigating the GH-gases: 

1. A calibration of the radiation sensors to quantify the outgoing heat flux. 
2. Blind tests, which demonstrate that short-term temperature fluctuations during the addition 

of gases have no influence on the final temperatures and heat flows. 
3. Control tests with the IR-inactive noble gases argon and helium to exclude heat conduction 

as a cause of a possible additional heat flux. 
4. Detection and quantification of the background radiation and losses. 

Only with these preparatory steps can it be ensured that the experiments demonstrate the physical 
principles of gas radiation. Of course, these are not experiments on a planetary scale, but rather a 
fundamental proof that GH-gases can convert the heat of their surroundings into IR radiation even 
at normal pressure, and thus that they significantly influence the heat flows in the atmosphere 
through upward or downward radiation. 

2. Experimental Set-Up 

2.1 General Concept 

The core of the experimental setup consists of a vertically positioned, heated aluminum cylinder, 
enclosed at the top by a dome and at the bottom by a Polyethylene (PE) foil. Below the cylinder, 
a separate energy sink in form of a cooled plate PC is located. It is equipped with radiation detectors 
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DT and DP (Figs. 1 and 2). The cylinder and PC plate are not rigidly connected, allowing calibration 
of the radiation detectors with a heat source. 

 

Fig. 1: Schematic experimental setup. 

The interior surfaces of the cylinder and dome are highly polished to minimize their IR emissions. 
Temperature sensors at various distances from the PE foil measure the cylinder temperatures T1 -
T5 , which are recorded by data lockers. 

To uniformly heat the aluminum cylinder, water at a constant temperature of TH = 51°C is passed 
through a PVC hose that wraps around the cylinder along its entire length (Fig. 2a). A 2 mm thick 
insulating tape is placed between the hose and the cylinder, which plays an important role in 
detecting gas radiation. As a result, the cylinder temperatures T1 – T5 are significantly lower than 
the water temperature TH . This cooling effect depends on the heat losses to the PC plate and is 
thus an indicator of the intensity of this heat flow (see also Table 1 and Fig. 5). 

The vertical positioning of the cylinder ensures a stable air stratification, eliminating convection 
as a means of heat transfer. Heat conduction losses to the PC plate are minimized because stagnant 
air is a very poor conductor of heat, and the cylinder is separated from the cooled PC plate with its 
detectors by the PE foil. At the same time, this foil is highly transparent for IR radiation in the 
spectral range of interest and, together with the radiation detectors DT and DP, ensures detection 
of the IR radiation emitted by the gas and the cylinder walls. 

The detector DT consists of a small, blackened disc, whose temperature TD is measured, and which 
is glued to an 8 mm thick insulating layer in the middle of the PC plate; parallel as detector DP is 
the voltage VP of 10 (mini) Peltier elements recorded, which are fixed on the PC plate and are 
electrically connected in series (Fig. 2c). 

Underneath the PC plate is a copper coil embedded in concrete, which dissipates the transferred 
heat by flowing water at a constant temperature of 8.5°C. 

Test gases can be poured in through two openings, one in the dome and one at the bottom of the 
cylinder. To ensure loss-free filling, the light gases methane and helium are metered into the upper 
opening and all other gases into the lower opening. A pump is then used to circulate the gas mix-
ture for 15 minutes to achieve a homogeneous mixture. 
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Since water vapor is a strong GH-gas that can influence the measurement, the water vapor con-
centration in the cylinder is reduced to a minimum with a desiccant before the test gases are added. 

 

Fig. 2: Left: Gas cylinder with insulating wallpaper and PVC hose for heating with 51°C warm 
water, before the external thermal insulation was applied. Top right: View into the interior of the 
gas cylinder with the PE foil clamped between two wooden panels as the lower end. Bottom right: 
The blackened PC plate beneath the gas cylinder with the thermal radiation sensors DT and DP, 
thermally insulated by a Styrofoam block with a mirrored aluminum inner wall. 

2.2 Calibration of Radiation Detectors 

The detectors DT and DP measure the IR radiation emitted by the cylinder through a temperature 
or voltage increase. To derive the radiation output in Watts from these values, the detectors are 
calibrated using a defined heat emission. Heat conduction plays only a minor role here (see sub-
section 3.3). 

For this purpose, the cylinder above the radiation detector is replaced by a Styrofoam block con-
taining an electrically heated plate PW. Like the cylinder, it is separated from the radiation detector 
by a PE Foil (Fig. 3). The radiation detector itself remains unchanged. 

 

Fig. 3: Calibration of the radiation detectors DT and DP . Left: Styrofoam block with heating plate 
and PE foil. Right: Schematic experimental setup. 
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When gradually increasing the heating for plate PW, the respective temperature TD and voltage VP 
of the sensors are measured. They are established within 1 hour of constant heating per heating 
stage (Appendix, Table A3). Fig. 4 shows the strictly linear relationship between power and the 
measured temperature TD or voltage VP. Since the detectors are separated from the heating plate 
by the PE foil, they measure almost exclusively the IR radiation emitted by the plate (see Subsec-
tion 3.3). 

With reference to the cylinder's radiation cross-section of A = 0.0855 m², the received radiation 
intensity is specified in W/m². This is important for further analysis to compare the measurements 
with the theoretically expected intensities. For the temperature sensor, the relationship is: 

𝐼୘(𝑇஽) = (0.935 ∙ 𝑇ୈ − 8.512)/𝐴  [W/mଶ]  ,                                    (1𝑎)    

for the Peltier elements: 

𝐼୔(𝑉୔) = (5.069 ∙ 𝑉୔ − 2.283)/𝐴  [W/mଶ]  .                                    (1𝑏)    

 

Fig. 4: Correlation of a) temperature TD and radiant power IT , b) voltage VP and radiant power IP. 

When measuring the gas- and superimposed background-radiation, a slight difference of about 
5% is observed between the detectors when converting the measured temperature or voltage into 
corresponding intensities according to (1a) and (1b). For the further data analysis and the com-
parison with theory, the average value Iav of both measurements is considered. At the same time, 
this reduces minor fluctuations between individual values. 

3. Preliminary Tests 

3.1 Measurement with Test Gases 

Filling the cylinder with a test gas and subsequent circulation (homogenization) leads to a brief 
cooling of the inside air and appears as a stronger dip in the T1 temperature curve (Fig. 5). This 
raises the question, how far the lower temperature of the freshly added test gases can influence 
the measurements of the cylinder temperatures T1  T5. Preliminary tests with dried air as test gas 
demonstrate that these mechanical interventions do not affect the long-term measurements. All 
temperature differences ΔT before and after pouring in air, are zero or close to zero (Table 1), if 
the system is allowed approximately 40 minutes to return to thermal equilibrium. The measure-
ment phases over 60 minutes before and after adding the sample gases reduce smaller temperature 
fluctuations and give reliable average values. 

Also the background intensity I0 from the cylinder walls, as registered by the detectors DT and DP, 
are only minimally influenced by this filling and pumping procedure (see Table 1 and Fig. 5b). 

Table 1: Preliminary test with dried air (H2O ~ 0.15 vol.%). 

Dry Air 
TW  

°C 
TC  

°C 
T5  

°C 
T4  

°C 
T3  

°C 
T2  

°C 
T1  

°C 
TD  

°C 
VP  

V 
I0  

W/m2 

Final values 51.0 10.0 44.3 44.2 43.8 43.9 41.5 16.2 1.82 79.5 

ΔTD /ΔVP /ΔI 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.01 0.5 
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 Fig. 5: Preliminary test with dried air, a) water temperature TH and temperatures T1  T5 in the 
cylinder, b) background radiation I0,av  as average of the detectors DT and DP at H2O ~ 0.15 vol.%. 

3.2 Control Tests with Argon and Helium 

Since the specific thermal conductivity of the air in the cylinder changes after adding a GH-gas, 
it is necessary to check whether the internal thermal conductivity λgas influences the measured 
values. Note, this refers to heat flows within the cylinder up to the final PE foil. External heat 
conduction refers to heat from the PE foil to the PC plate (Subsection 3.3). 

Control experiments with the IR-inactive noble gases argon (λAr = 0.01772 W/m/K) and helium 
(λHe = 0.1513 W/m/K), which have significantly different values than air ( λair = 0.0262 W/m/K), 
show no observable changes in temperatures or background radiation (Table 2, Fig. 6). This re-
futes another potential objection that the radiation of the GH-gases could be caused by heat con-
duction effects inside the cylinder. 

Table 2: Effects of argon and helium, each 8 vol.%, H2 O ~ 0.15 vol.%. 

Noble gas 
ΔTW  

°C 
ΔTC  

°C 
ΔT5  

°C 
ΔT4  

°C 
ΔT3  

°C 
ΔT2  

°C 
ΔT1  

°C 
ΔTD  

°C 
ΔVP  

V 
ΔI0,av      
W/m2 

Argon 0.0 0.0 0.0 0.0 0.0 -0.1 -0.1 0.0 0.0 1.2 

Helium 0.1 0.0 0.2 0.1 0.2 0.1 0.0 0.0 0.0 0.4 

           

 

Fig. 6: Control experiments with 8% argon and 8% helium, H2 O ~ 0.15%. 
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3.3 Background Radiation of the Cylinder 

The cylinder is made of polished aluminum, which with an emissivity of ε = 5% would suggest a 
low-emission surface. However, this is too short-sighted, since the cylinder as a cavity radiator 
with efficient multiple reflections and an inner surface of more than 10 times the size of the exit 
surface to the sensors, emits a significantly higher intensity than a flat plate made of the same 
material and with the cross-section of the cylinder. This can be demonstrated by continuously 
heating the cylinder. When the water temperature TH increases, the difference to the cylinder tem-
peratures T1  T5 increases, which is caused by a rising radiation loss to the plate PC and observed 
as increasing intensity at the detectors DT and DP (Fig. 7). 

 

Fig. 7: a) Increase of the temperatures T1  T5 with increasing jacket heating TH, b) detection of 
the background radiation I0 of the cylinder with increasing temperature, and calculation of the 
mechanical heat conduction QWLG to the PC plate, H2O ~ 0.15%. 

This radiation is 2 to 10 times higher than that observed when GH-gases are added (Section 4), 
indicating a considerable background radiation. 

A significantly smaller fraction (around 6%) of heat losses is caused by heat conduction between 
the cylinder and the PC plate (outside), which are separated by 15 cm (Fig. 7b, green graph). For 
calculating the heat conduction, the thermal conductivity λair = 0.0262 W/m/K and an area A = 
0.0855 m2 are used. As temperature difference from the adjacent T1 measuring point to the cooled 
plate PC with ΔT = T1  TC a distance of L = 0.2 m is assumed. Additional thermal insulation 
provided by the very thin PE film can be neglected. 

Stagnant air is a very poor conductor of heat. These studies demonstrate once again how important 
it is to use a vertically arranged cylinder and to avoid convection that inevitably occurs with a 
horizontal arrangement (see Part I [6]). 

This is different when a GH-gas is added. In this case, no mechanical heat conduction can con-
tribute to the external heat flow, since cylinder temperatures are not increasing but are actually 
decreasing slightly. This means when a GH-gas is added, external mechanical heat conduction 
per se cannot raise the outgoing flux. In other words: the intensity I0 before adding the test gases, 
still may contain a small portion of mechanical conduction, while the additional heat flux of the 
GH-gases IGas is exclusively the result of the radiative transfer (Fig. 17 and following). 

 

Fig. 8: Background radiation I0,av  measured by the detectors DT and DP with increasing jacket heat-
ing TH for two water vapor concentrations of 1.1 and ~ 0.15%. 
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The background radiation also depends on the humidity of the cylinder air. Fig. 8 shows a com-
parison of the measured intensity I0,av of the sensors DT and DP for two different water vapor 
contents of ~ 0.15 and 1.1% while continuously heating the cylinder jacket. 

4. Some Theoretical Aspects 

4.1. Spectral Properties of Greenhouse Gases 

Unlike nitrogen, oxygen or the noble gases, GH-gases can absorb and re-emit radiation in the 
mid- and long-wave IR spectral range. This spectral range of so-called thermal radiation extends 
on a wavelength scale  from approximately 4 µm to the cm range, or in reciprocal wavelengths1 
over a range of 1 to 2500 cm-1. 

Within this spectral interval, the main GH-gases in the atmosphere, such as water vapor (WV-
H2O), carbon dioxide (CO2), methane (CH4), nitrous oxide (N2O), and ozone (O3), have a total of 
722,000 spectral lines, many of them very weak in intensity, but over the long propagation paths 
in the atmosphere they also contribute to a significant interaction with radiation. The strength of 
this radiative interaction on a line is defined by the effective cross section—or as integral over the 
line profile of such a spectral line—by the spectral line intensity (see, e.g., Harde 2013 [5], Sub-
section 2.2.2). Fig. 9 provides an overview over the line intensities of H2O, CO2, CH4 and N2O 
according to the HITRAN database [1]. 

 

Fig. 9: Spectral line intensities of the greenhouse gases water vapor, CO2 , CH4 and N2O over the 
spectral range of 0 - 2500 cm-1. This corresponds to a wavelength range of ∞ - 4 µm. The values 
apply to a gas temperature of T = 44°C. 

Tetrafluoroethane (CFH2CF3), also known as HFC-134a or Freon 134a, is not available as a 'line- 
by-line' dataset in the HITRAN database, but the absorption cross section is listed for specific 
spectral ranges, temperatures and ambient pressures (Harrison 2016 [7]). Freon has been used as 
an efficient coolant for many years, but according to an EU regulation, its use is to be gradually 
phased out by 2030 due to its high global warming potential.  

For our investigations the very high IR activity is particularly well suited for demonstrating the 
GHE. Fig. 10 shows the absorption cross section of the particularly dominant spectral bands be-
tween 800 and 1500 cm-1 for the relevant spectral range. Because the spectrum consists of a mul-
titude of closely spaced lines, it is virtually impossible to derive spectroscopic line parameters for 

 
1 Instead representing spectra in wavelength units, it is very common in spectroscopy to use reciprocal 

wavelengths 𝜈෤ = 1/𝜆 in units of cm-1 . This corresponds to a frequency scale  = c/, divided by the 
speed of light c, and is expressed as wavenumbers per cm. 



 H. Harde, M. Schnell: The Negative Greenhouse Effect – Part II  

Science of Climate Change https://scienceofclimatechange.org 

 18 

it and to perform comparable simulations of the absorption-emission spectra as for the other gases. 
Therefore, the following discussion on Freon is limited to a qualitative comparison of the meas-
urements with the other gases. 

 

Fig. 10: IR absorption cross section of tetrafluoroethane (CFH2 CF3 ) at 296 K and 1014 hPa in air 
(Harrison 2016 [7]). 

4.2 Emissions of Greenhouse Gases 

The actual maximum absorption and emission at the molecular bands is determined not only by 
the line intensities or cross sections but essentially depends also on the thermal excitation by 
collision according to a Boltzmann distribution (see Harde 2013 [5], Subsection 2.3). For the GH-
gases, displayed in Fig. 9, the spectral intensities (not to be confused with the line intensities) are 
shown in Fig. 11, each calculated for a gas concentration of 2% in air, a total pressure of p = 1013 
hPa, a gas temperature of TG = 44°C, and a temperature gradient from the dome to the PE foil of 
0.047°C/cm. 

 

Fig. 11: Emission spectra of WV, CO2 , CH4 and N2 O each for concentrations of 2% in air at a gas 
temperature TG = 44°C and a pressure of 1013 hPa. 

Due to the reduced thermal excitation of higher lying molecular states the significantly stronger 
spectral band of CO2 (red) around 2300 cm-1 (see also Fig. 9) plays a subordinate role with a 
contribution of only 1.3 W/m2 compared to a total emission for CO2 of 28.8 W/m2. On the other 
hand the bending mode with attached rotation lines around 670 cm-1 practically coincides with 
the maximum of a Planckian radiator at 44°C (red dotted line), and thus, mainly determines the 
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CO2 GHE. The small intensity difference of the CO2 band to the blackbody distribution is the 
result of a radiative transfer calculation with a temperature gradient across the cylinder (lapse 
rate) of R = 0.047°C/cm.  

It is also clearly visible, not CO2 but WV (blue) is the dominating GH-gas with a total emission 
of 42.2 W/m2, which covers larger parts of the other gases. This is already evident under the 
conditions prevailing here, with the same concentrations for all gases. In the atmosphere, with a 
WV concentration 30–40 times that of CO2 and a significantly larger superposition, this results in 
a substantially reduced impact of the other gases. 

N2O (orange), with  an emission of 29.2 W/m2, is additionally masked by CH4 (green) with 11.1 
W/m2, and the strongest band of N2O around 2250 cm-1 has hardly any influence on the total 
emission. 

While the individual contributions of the gases add up to a total intensity of 111.3 W/m2, this in-
tensity is reduced by 32% to 75.8 W/m2 due to the spectral superposition and an increased satu-
ration on the bands. 

4.3 Background Radiation and Transmission Losses 

The greater challenge in measuring the respective emitted intensities of a gas undoubtedly lies in 
separating this component from the higher background caused by the radiation from the cylinder 
walls. As already explained in Section 3.3, the inner surface of the cylinder, which stores the 
gases, is good 10 times larger than the cross-sectional area to the sensors. Therefore, despite a 
very low emissivity of the walls of only approximately 5%, due to efficient multiple reflection, 
the cylinder acts like a cavity radiator, emitting a significantly higher radiation intensity than a 
flat plate made of the same material (see also cavity radiator, e.g., Atkins & Friedman 2011[8]). 

For our further analysis and comparison with the measurements, a Planckian radiator with an 
effective emissivity eff of 42% is used as the background. In addition, radiation emerging from 
the cylinder acts as a volume radiator with the sensors only detecting a limited aperture angle 
compared to the heat plate PW used for calibration. In our calculations this is incorporated by a 
loss factor V. 

Further slight losses are caused by reflection at the front and back side of the PE foil, and also by 
selective absorption bands of polyethylene. Figure 12 shows the transmission of a PE foil meas-
ured with a Fourier spectrometer over the relevant spectral range (Asgari et al. 2014 [9]). 

 

Fig. 12: Fourier transmission spectrum of a PE foil (see Asgari et al. 2014 [9] ). The wavenumber 
scale runs from right to left. 

The CH-bending vibration around 690–900 cm-1 (at the right side) with the center at 722.9 cm-1 

partially overlaps with the emission range of CO2. For the further calculations, we use a wave-
number-dependent transmission 

 
𝑇(𝜈෤) = 𝑉ஐ ∙ 𝜏଴ ቈ1 − ෍ 𝑛௜

ଷ

ଵ

(𝑑𝜈෤/2)ଶ

(𝜈෤ − 𝜈෤௜)
ଶ + (𝑑𝜈෤/2)ଶ

቉                                   (2)  
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with a Lorentz profile around the absorption centers 𝜈෤1  = 722.9 cm 1 , 𝜈෤2 = 1377.2 cm -1 and 𝜈෤3  = 
1456.2 cm 1 (Fig. 13). The transmission factor 0 with 0.9 takes into account the reflections at the 
foil. The line widths are chosen uniformly for all absorptions with d෤ = 30 cm1, while the ab-
sorption depths are determined by the amplitudes ni and vary between 40 and 98%. With V = 
0.4, the total transmission is shown in Fig. 13. 

 

Fig. 13: Total spectral transmission through the PE foil and limited aperture of the detectors. 

For example, with CO2 at a concentration of 2% and an effective emissivity of the cylinder with 
eff = 42%, this results in an expected spectral intensity at the detectors, as shown in Fig. 14. A 
residual humidity (blue) of 1% is also considered. The actual CO2 emission (red) with 28.8 W/m2 
(see Fig. 11) contributes only 5.3 W/m2 compared to the wall emission (grey) and water vapor, 
together with 90.3 W/m2. This is not more than 5.5% of the total intensity with 95.6 W/m2. These 
calculations show that with a laboratory experiment, similar to an iceberg, we can basically only 
measure the tip of the gas radiation. 

 

Fig. 14: Spectral intensity as a function of wavenumber for 2% CO2 , 1% H2O, L=70 cm, R = 0.047 
°C/cm, eff = 42% and V  = 0.4 at a total intensity of 95.6 W/m 2. 

4.4 The Negative Greenhouse Effect 

If the radiation emitted by a warmer gas layer leads to a cooling of this layer, because IR-active 
gases are excited through collision processes and the required emission energy is extracted from 
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the kinetic energy of the gas, we can already speak of this process in a simplified manner as a 
negative GHE. However, more general and fundamental is to refer to the definition of the GHE. 

According to Thomas & Stamnes (1999) [10] and in accordance with the current IPCC assessment 
report, AR6 [11], the difference in the intensities on the one hand emitted from the Earth’s surface 
and on the other hand radiated at TOA to space, is defined as the atmospheric GHE. 

With Stefan-Boltzmann, then the intensity emitted by a surface element of the Earth is 

𝐹ୱ = 𝜀ୱ 𝜎 𝑇ୱ
ସ,                                                                     (3)   

with s as the emissivity,  as the Stefan-Boltzmann constant and TS as the temperature of this 
surface. The radiative forcing at TOA can be derived from a simplified two-layer model as:  

𝐹୘୓୅ = 𝜀ୱ (1 − 𝛼୅) 𝜎 𝑇ୱ
ସ + 𝜀୅ 𝜎 𝑇୅

ସ = 𝜀ୱ 𝜎 𝑇ୱ
ସ − 𝜀୅ 𝜎 (𝜀ୱ 𝑇ୱ

ସ − 𝑇୅
ସ) ,                   (4)   

with an atmospheric temperature TA and an atmospheric absorptivity 𝛼୅ equal to the atmospheric 
emissivity 𝜀୅. This gives for the GHE: 

GHE = 𝜀୅ 𝜎 (𝜀ୱ 𝑇ୱ
ସ − 𝑇୅

ସ).                                                    (5)   

The emissivity 𝜀஺includes all IR-active gases and depends on their concentration. 

For ൫𝜀ୱ 𝑇ୱ
ସ − 𝑇୅

ସ൯ < 0, or for 𝜀ୱ = 1 and a colder surface than the atmosphere, the GHE becomes 
negative, and the Earth loses more energy to space with GH-gases than without, at least locally. 

Also with a continuous temperature increase from ground to higher altitudes–thus a negative lapse 
rate (the regular lapse rate over the troposphere is normally given as +6.5°C/km)–the same applies 
with a higher emission to space than radiation from the Earth is absorbed by the atmosphere (see 
also: Schmithüsen et al., 2015 [12]; van Wijngaarden & Happer, 2025 [13]). 

In the set-up presented here, the cylinder walls on the one hand serve to transfer kinetic energy to 
the gas via mechanical heat conduction, which in the real atmosphere is caused by air currents, 
e.g., from equatorial zones to the poles. On the other hand, they emit the background radiation 
comparable to the long-wave radiation emitted by the Earth's surface. Although the walls have 
the highest temperature, their emitted intensity with an emissivity   5% and an effective emis-
sivity eff = 42% (see Subsec. 4.3) is weaker than the radiation emitted by the gas on the emission 
bands. Substituting 𝜀ୱ by 𝜀ୣ୤୤ in (5) and with TS and TA now representing the wall and gas tem-
perature in the cylinder, this corresponds to conditions similar to those for a negative GHE, where 
the gas absorbs less background radiation than it emits. 

The additionally emitted energy of the IR-active molecules is drawn from the thermal energy of 
the gas and, while the heating power remains constant, leads to a changed temperature distribution 
and reduction across the cylinder with slightly reduced wall temperatures and thus cooling. 

5. Measurements and Calculations of Greenhouse Gas Emissions 

This section summarizes the measurements and corresponding calculations for the radiation of 
the GH-gases water vapor, carbon dioxide, methane, nitrous oxide and Freon 134a. All investiga-
tions are performed under atmospheric pressure conditions, and additionally to the actual detec-
tion of IR radiation, the cooling of the gases due to their emission and their impact on the cylinder 
temperature are recorded. 

The strongest cooling occurs at position T1 and gradually decreases towards the dome. This cool-
ing gradient determines the radiation transfer according to the Schwarzschild equation and the 
layer model (Schwarzschild 1906 [14], Harde 2013 [5]). The T1 gas layer, which is only 5 cm 
away from the PE foil, can transmit its IR radiation almost unhindered to the PC plate and the 
detectors. All more distant layers must transport the energy via absorption and remission, which 
hinders the radiation transfer through the lower gas layers. This effect is particularly evident for 
nitrous oxide and Freon, since these gases influence all five temperatures T1 – T5 (Subsections 5.4 
and 5.5). 

TD and VP are the temperatures and voltages measured by the radiation detectors before adding  
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the GH-gases, and ΔTD and ΔVP are the changes caused by these gases. With equation (1) the 
respective data are expressed as intensities, and the fraction caused by the gases is given by the 
difference with and without GH-gases. However, the spectral superposition with the background 
radiation results in a significantly reduced signal component for the gas to be detected (see Sub-
section 4.3). 

For control purposes, the heating temperature ΔTH and the cooling temperature ΔTC are also spec-
ified. ΔTH = 0 excludes that any cooling of the cylinder temperature is caused by the wall heating 
TH. For the stronger GH-gases Freon 134a and N2O the cooling temperature ΔTC shows a notice-
able  increase in the experiments, which can be attributed to an increase in gas radiation and can 
only be dissipated from the PC plate by a rising temperature. Such increase is a further indication 
of an ascending gas radiation. 

5.1 Water Vapor 

Preliminary measurements with different air humidity already demonstrated the significant influ-
ence of WV on the background radiation (Fig. 8). Therefore, first measurements for three different 
air humidities are presented, and their influence on the other gases is considered in the following 
subsections. 

If the gas cylinder is filled directly with humid air from the laboratory, this corresponds to a water 
vapor concentration of approximately 1.1%. However, the humidity can be changed within limits 
using the connected air circulation pump (Fig. 1). Either the air in the compartment passes a des-
iccant, which can reduce the WV concentration to a minimum of ~ 0.15%, or it is pumped through 
a water container, increasing the humidity to a maximum of 1.9%. 

The measurements are listed in Table 3 and shown in Fig. 15. Despite the comparatively small 
concentration variation, significant changes with humidity are evident. While the temperatures T1 

and T2 are slightly decreasing, the values for TD and VP, and thus the mean total intensity IT, are 
clearly increasing (Table 3, last column). 

Table 3: Measurements with air of different humidity 

W-Vapor 
% 

TW  

°C 
TC  

°C 
T5  

°C 
T4  

°C 
T3  

°C 
T2  

°C 
T1  

°C 
TD  

°C 
VP  

V 
I T  

W/m2 

0.15 51.0 10.0 44.3 44.2 43.8 43.9 41.5 16.2 1.82 79.4 

1.1 51.1 10.1 44.3 44.2 43.8 43.8 41.4 16.6 1.88 83.4 

1.9 51.2 10.1 44.3 44.2 43.8 43.7 41.2 16.7 1.92 85.1 
 

 

Fig. 15: Measured mean intensity (Rectangles, blue) and calculated intensity (Diamonds, red) of 
water vapor emission as a function of concentration at a background radiation from the cylinder of 
77.4 W/m2 for R = 0.043 - 0.046 °C/cm,  = 42%, V =37.9 %. 
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The measurements (blue squares) can well be reproduced by radiative transfer calculations (red 
diamonds), for the minimum WV concentration of 0.15% with a temperature gradient of R = 
0.043 °C/cm, for the concentration of 1.9 vol.% with a value of 0.046 °C/cm due to the slightly 
increased temperature gradient. The emissivity of the background radiation is eff= 42% and the 
loss factor V= 37.9%. 

The WV portion compared to the total signal is only 2.5% (2.0 Wm-2 / 79.4 Wm-2 ) for a concen-
tration of 0.15% and increases to 9% (7.7 / 85.1) for a 1.9% WV fraction. In any case, this requires 
an extremely careful and sophisticated experimental technique, as can be achieved with the pre-
sented set-up. 

Without the background, the WV emission would be 10.5 W/m2 at a concentration of 0.15% and 
would reduce to 3.5 W/m2 at the detectors. It increases to 41.3 W/m2 at a concentration of 1.9% 
and is still 13.6 W/m2 at the detectors (Fig. 16: WV - blue; Planck - dashed gray, eff= 42%). 

The interaction of WV with other greenhouse gases is of particular interest from the perspective 
of the so-called water vapor feedback. The overlap and influence on the emission behavior of the 
other gases will therefore be considered in more detail in the following Subsections. 

 

Fig. 16: Calculated intensity for 1.9% WV (blue) at the detectors without background radiation from 
Planck radiators (grey for eff = 42%). 

5.2 CO2 Measurements 

CO2 radiation is measured for three standard concentrations of 2, 4, and 8%. Addition of CO2 
leads to a significant cooling of the gas temperatures T1 and T2 with a simultaneous increase in 
the measured IR radiation intensity I0,av (Fig. 17). 

 

Fig. 17: Effects of 8% CO2. a) Decrease in cylinder temperatures, b) increase in IR radiation after 
adding CO2 (WV concentration about 0.15%). 
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These effects not only depend on the CO2 concentration but are also determined by the respective 
WV concentration. Therefore, each of the CO2 measurements is carried out for the three WV con-
centrations 0.15%, 1.1% and 1.9%. The temperature changes are listed in Table 4a, and the IR 
radiation detected by the sensors is displayed in Table 4b. Here, I0,av is the mean background 
radiation before addition of CO2 and ICO2 is the change in intensity due to CO2. The absolute 
fluctuations in I0,av from measurement to measurement are on average less than 3% and have no 
noticeable influence on the difference measurements of ICO2. 

Table 4a: Influence of CO2 and WV on the gas temperatures T1 – T5 . 

W-Vapor % 
ΔTH  

°C 
ΔTC  

°C 
ΔT5  

°C 
ΔT4  

°C 
ΔT3  

°C 
ΔT2  

°C 
ΔT1  

°C 

CO2: 2%              

0.15 % H2O 0.0 0.1 -0.1 -0.2 -0.2 -0.5 -0.5 

1.1 %   H2O 0.0 0.1 -0.1 -0.2 -0.2 -0.3 -0.4 

1.9 %   H2O 0.0 0.1 -0.1 -0.1 -0.2 -0.3 -0.3 

CO2: 4%              

0.15 % H2O 0.0 0.1 -0.2 -0.2 -0.4 -0.6 -0.6 

1.1 %   H2O 0.0 0.1 -0.1 -0.1 -0.2 -0.3 -0.5 

1.9 %   H2O 0.0 0.1 -0.1 -0.1 -0.2 -0.3 -0.4 

CO2: 8%        
0.15 % H2O 0.0 0.2 -0.1 -0.2 -0.3 -0.5 -0.8 

1.1 %   H2O 0.0 0.2 -0.1 -0.1 -0.2 -0.4 -0.5 
1.9 %   H2O 0.0 0.2 0.0 -0.1 -0.2 -0.4 -0.4 

Table 4b: Measurement of the IR radiation at the sensors, I0,av = background radiation before 
addition of CO2, ICO2 = change in intensity due to CO2 radiation. 

The measurements of the averaged total intensity are compared in Fig. 18 with the corresponding 
radiative transfer calculations for CO2 and H20. The background radiation is included according 
to Figs. 14 and 16. The measurements are indicated by squares with error bars of ±1.2% of the 
measured values, the corresponding calculations by diamonds and dashed lines. The data for the 
WV concentration of 0.15% are in blue, for 1.1% in green, and for 1.9% in magenta. For a better 
comparison of the data, the initial intensities I0,av are uniformly related to the values listed in Table 
3.  

W-Vapor % 
TD  

°C 
ΔTD  

°C 
VP  

V 
ΔVP  

V 
I0,av  

W/m 2 
ICO2  
W/m2 

CO2: 2%         
0.15 % H2O 16.4 0.7 1.86 0.14 81.7 7.7 

1.1 %   H2O 16.6 0.5 1.89 0.10 83.9 5.9 

1.9 %   H2O 16.7 0.5 1.93 0.10 85.4 5.7 

CO2: 4%       

0.15 % H2O 16.2 0.8 1.82 0.15 79.4 8.8 

1.1 %   H2O 16.5 0.7 1.88 0.12 82.9 7.3 

1.9 %   H2O 16.6 0.6 1.91 0.12 84.6 6.5 

CO2: 8%       

0.15 % H2O 16.2 0.9 1.80 0.19 78.8 10.5 

1.1 %   H2O 16.5 0.8 1.87 0.14 82.6 8.3 

1.9 %   H2O 16.7 0.7 1.91 0.13 84.8 7.7 
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With increasing WV concentration, it is evident that not only the background radiation is contin-
uously increasing, but simultaneously this leads to a further attenuation of the CO2 radiation. This 
is particularly noticeable for the lower concentrations of WV and CO2, as can be seen from the 
different gradients after adding CO2. For example, an H2O concentration of 0.15% results in an 
increase of 7.7 W/m2, whereas for 1.9% WV the intensity is only increasing by 5.7 W/m2 (see 
Table 4b, last column). This is only 74% of the original intensity. 

 

Fig. 18: Measurements (Squares with error bars) and calculations (Diamonds, dashed line) for the 
IR radiation of CO2 at different WV concentrations (0.15% blue, 1.1% green, 8% red) and back-
ground radiation by cylinder walls. 

The attenuation is mainly due to a further increase in the background and thus an increased satu-
ration of the CO2 line-wings. So, a calculation for 2% CO2 alone – without background radiation 
of the cylinder walls – results in an emission of 28.8 W/m2 and for 1.9% WV alone of 41.2 W/m2, 
thus a total of 70 W/m2, whereas also considering the overlap, the intensity is only 0.13 W/m2 

smaller. The only slight overlap of the spectra around 670 cm-1 is obvious from Fig. 11 and also 
Fig. 14. 

However, due to the long propagation paths in the atmosphere and the 30 – 40 times higher WV 
concentration, the weak overlap of the spectra leads to a significant limitation of the CO2 climate 
sensitivity and also to a reduced WV-feedback (Harde 2014 [15], Harde 2017 [16]). For further 
detailed considerations of WV as the dominating GH-gas see also: Koutsoyiannis & Vournas 
2024 [17] and Koutsoyiannis 2024 [18]. 

Also striking is the different increase in CO2 radiation intensity at concentrations below and above 
2%, which changes from an almost linear to a logarithmic curve and reflects the clear saturation 
of the absorption and emission processes of the vibration-rotation band around 670 cm-1. For 
concentrations above 2%, the further increase in intensity is primarily determined by its unsatu-
rated wings and weaker bands. 

The kink with increasing intensity is observed for all GH-gases and is the reason why comparing 
CO2 with GH-gases at very low concentrations, as done for the so-called greenhouse potential, is 
like comparing apples and pears. 

5.3 Methane 

Methane is classified as a particularly dangerous GH-gas with a global warming potential 25 times 
higher than CO2. This classification arises from the low atmospheric methane concentration of 
approximately 2 ppm, at which the optical density is still very low compared to CO2, and thus 
there is still considerable potential for an increase. But global warming potential can easily be 
confused with effectiveness. In fact, methane gas radiation has been measured to be less effective 
than CO2 (Fig. 19). 
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Fig. 19: Effects of 8% methane, a) decrease in cylinder temperatures, b) increase in IR radiation 
after addition of CH4, H2O ~ 0.15%. 

Tables 5a and b show the measurements of the gas temperature and CH4 emission for the con-
centrations 2%, 4% and 8% at two WV concentrations. 

Table 5a: Influence of CH4 and WV on the gas temperatures T1 – T5 . 

W-Vapor % 
ΔTH  

°C 
ΔTC  

°C 
ΔT5  

°C 
ΔT4  

°C 
ΔT3  

°C 
ΔT2  

°C 
ΔT1  

°C 

CH4 : 2 %               

0.15 % H2O 0.0 0.1 0.0 -0.1 -0.1 -0.4 -0.5 

1.1 %   H2O 0.0 0.1 0.0 -0.1 -0.1 -0.2 -0.2 

CH4 : 4 %               

0.15 % H2O 0.0 0.1 -0.1 -0.2 -0.3 -0.4 -0.5 

1.1 %   H2O 0.0 0.1 0.0 -0.1 -0.2 -0.3 -0.4 

CH4 : 8 %        

0.15 % H2O 0.0 0.2 -0.1 -0.1 -0.3 -0.5 -0.7 

1.1 %   H2O 0.0 0.1 0.0 0.0 -0.2 -0.3 -0.6 

Table 5b: Measurement of IR radiation at the sensors, before and after addition of CH4.  
ICH4 = intensity change due to CH4 radiation. 

W-Vapor % 
TD  

°C 
ΔTD  

°C 
VP  

V 
ΔVP  

V 
I0,av  

W/m2 
ICH4  
W/m2 

CH4 : 2 %             

0.15 % H2O 16.1 0.6 1,795 0.116 78.6 6.3 

1.1 %   H2O 16.4 0.3 1,825 0.074 80.8 4.0 

CH4 : 4 %             

0.15 % H2O 16.1 0.6 1,801 0.116 78.4 6.6 

1.1 %   H2O 16.4 0.5 1,831 0.104 80.9 5.9 

CH4 : 8 %       

0.15 % H2O 16.1 0.8 1,793 0.144 78.0 8.5 

1.1 %   H2O 16.7 0.7 1,919 0.111 85.3 6.8 

 

Methane is oxidized to CO2 in the atmosphere under the influence of ozone and UV light and has 
a relatively short residence time of approximately nine years. An increase in the CO2 concentra-
tion of 2 ppm within nine years does not appear very significant. 

As with CO2, methane radiation also depends on the WV concentration. Due to the increase in 
the background and partial overlap of the bands, this again attenuates the CH4 signal. The greatest 
methane effect is achieved at a H2O concentration of 0.15% and is only 78% of the original effect 
at 1.1% WV (Table 5b). 
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Also for methane together with WV the measurements can very well be reproduced by the radia-
tive transfer calculations (Fig. 20). The measurements are again indicated by squares with error 
bars, and the corresponding calculations by diamonds and dashed lines, for a WV concentration 
of 0.15% in blue, for 1.1% in green. The initial intensities I0,av are consistently referenced to the 
values listed in Table 3.  

 

Fig. 20: Measurements (squares with error bars) and calculations (diamonds, dashed line) of the 
IR radiation of CH4  for two WV concentrations (0.15% blue, 1.1% green) and background radiation 
by cylinder walls. 

5.4 Nitrous Oxide 

Nitrous oxide (N2O), the third most important long-lived greenhouse gas, is thought to contribute 
significantly to global warming due to its long atmospheric residence time and its approximately 
300 times higher greenhouse potential relative to CO2. In the radiation experiment, the effect of 
N2O is higher than that of CO2, but only by a factor of 1.5 (see Fig. 21b compared to Fig. 17b). 

As with CO2 and CH4, nitrous oxide radiation also depends on the WV concentration. The greatest 
effect is again achieved at an H2O concentration of 0.15% and is reduced to 86% of the original 
effect at 1.1% water vapor (Table 6b). 

 
Fig. 21: Effects of 8% nitrous oxide, a) decrease in cylinder temperatures, b) increase in IR radia-
tion after addition of N2O at a WV concentration of 0.15%. 

Table 6a: Influence of N2O on the temperatures T1 – T5 . 

W-Vapor % 
ΔTH  

°C 
ΔTC  

°C 
ΔT5  

°C 
ΔT4  

°C 
ΔT3  

°C 
ΔT2  

°C 
ΔT1  

°C 

N2O : 2 %               

0.15 % H2O 0.0 0.2 -0.2 -0.3 -0.4 -0.6 -0.7 

1.1 %   H2O 0.0 0.2 -0.1 -0.2 -0.2 -0.5 -0.5 
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N2O : 4 %               

0.15 %  H2O 0.0 0.2 -0.2 -0.3 -0.4 -0.7 -0.9 

1.1 %    H2O 0.0 0.2 -0.2 -0.2 -0.3 -0.5 -0.7 

N2O : 8 %        

0.15 % H2O 0.1 0.3 -0.1 -0.2 -0.4 -0.7 -1.1 

1.1 %   H2O 0.0 0.2 -0.1 -0.2 -0.3 -0.6 -0.8 

Table 6b: Measurement of IR radiation at the sensors, before and after addition of N2O.   
  IN2O = intensity change due to N2O radiation.      . 

W-Vapor % 
TD  

°C 
ΔTD  

°C 
VP  

V 
ΔVP  

V 
I0,av  

W/m2 
IN2O  
W/m2 

N2O : 2 %             

0.15 % H2O 16.2 1.0 1,809 0.189 79.0 10.7 

1.1 %   H2O 16.6 0.8 1,890 0.156 83.8 9.1 

N2O : 4 %             

0.15 % H2O 16.0 1.1 1,779 0.220 77.3 12.5 

1.1 %   H2O 16.7 1.0 1,910 0.187 84.8 11.0 

N2O : 8 %       

0.15 % H2O 16.0 1.3 1,777 0.255 77.1 14.8 

1.1 %   H2O 16.7 1.2 1,921 0.207 85.2 12.5 

 

 

Fig. 22: Measurements (squares with error bars) and calculations (diamonds, dashed lines) of the 
IR radiation of N2 O for two WV concentrations (0.15% blue, 1.1% green) and background radiation 
from cylinder walls. 

5.5 Freon 

If doubters of the GHE – whether the positive or negative effect – still need to be convinced that 
GH-gases are emitting radiation and at the same time are cooling their environment, this even 
under conditions as found in the lower troposphere, they should take a closer look at the meas-
urements of Freon 134a (1,1,1,2-Tetrafluoroethane) (Fig. 23). 

Freon, a very strong greenhouse gas, which already allowed to observe the radiation with an un-
suitable Styrofoam box (see Part I [6]), shows cooling of the cylinder air of over 2°C at a concen-
tration of only 1 vol.% (Fig. 23a). The gas radiation attains such high intensities (see Fig. 23b) 
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that the heat can only be dissipated from the plate PC with a significant increase in the TC temper-
ature. The illusion that GH-gases are merely absorbers at normal pressure and do not emit IR 
radiation, and therefore do not generate back-radiation, is clearly refuted in view of these unam-
biguous data. 

 
Fig. 23: Effects of 1% Freon 134a, a) decrease in cylinder temperatures, b) increase in IR radiation 
after addition of Freon, H2O ~ 0.15%. 

The greatest Freon effect is achieved at a WV concentration of 0.15% and is only about 88% of 
the original effect at 1.1% water vapor (Table 7b). 

Table 7a: Influence of Freon 134a on the temperatures T1 – T5 .  

W-Vapor % 
ΔTH  

°C 
ΔTC  

°C 
ΔT5  

°C 
ΔT4  

°C 
ΔT3  

°C 
ΔT2  

°C 
ΔT1  

°C 

Freon: 1%               

0.15% H2O 0.0 0.6 -0.6 -0.7 -1.1 -1.8 -2.8 

1.1%   H2O 0.0 0.5 -0.5 -0.6 -0.9 -1.5 -2.4 

Freon: 2%               

0.15% H2O 0.1 0.7 -0.5 -0.4 -0.9 -1.9 -3.1 

1.1%   H2O 0.0 0.6 -0.3 -0.3 -0.7 -1.6 -2.7 

Freon: 4%        
0.15% H2O 0.0 0.7 -0.2 -0.3 -0.8 -1.8 -3.5 

1.1%   H2O 0.0 0.6 -0.1 -0.2 -0.5 -1.5 -3.0 

Table 7b: Measurement of IR radiation at the sensors, before and after addition of Freon 134a. 
              IFreon = change in intensity due to Freon radiation.                                                 .  

W-Vapor % 
TD  

°C 
ΔTD  

°C 
VP  

V 
ΔVP  

V 
I0,av  

W/m2 
IFreon 

W/m2 

Freon: 1%             
0.15% H2O 16.1 3.3 1,789 0.636 78.3 36.6 

1.1%   H2O 16.5 2.9 1,870 0.550 82.7 32.1 

Freon: 2%             

0.15% H2O 16.1 3.6 1,769 0.692 77.3 40.1 

1.1%   H2O 16.6 3.2 1,881 0.612 83.4 35.6 

Freon: 4%       

0.15% H2O 16.0 3.8 1,764 0.733 76.9 42.5 

1.1%   H2O 16.6 3.3 1,878 0.629 83.4 36.8 
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The measured intensities before and after pouring in Freon according to Table 7b are graphically 
represented in Fig. 24. Within the assumed error limits of 2.5%, they show virtually no further 
increase with Freon concentrations larger than 1% and only a slight difference for a WV content 
of 0.15% (blue) compared to 1.1% (green). Interpolated equilibration values are shown as dotted 
graphs. The emission is already so strongly saturated at 1% Freon that even an increased WV 
content shows only a minimal correction. 

 

Fig. 24: Measurements (squares with error bars) and interpolation of the data (dotted lines) for the 
IR radiation of Freon 134a for two WV concentrations (0.15% blue, 1.1% green) with background 
radiation from the cylinder walls. 

6. Summary 

Using a new experimental setup with only two temperature poles—a warm gas and a cooler radi-
ation receiver—it can be shown that GH-gases are emitters even at normal pressure. These gases 
absorb energy through inelastic collisions with the nitrogen and oxygen molecules in air at the 
expense of the kinetic energy of their surroundings, and they release this energy as IR radiation. 
Such a process is a negative greenhouse effect and results in the ambient air cooling and increas-
ing IR radiation, when CO2, methane, nitrous oxide and Freon 134a are added. These experiments 
demonstrate once again that the so-called back-radiation is not ominous but actually exists. 

A violation of the second law of thermodynamics per se doesn’t exist, since these experiments 
only investigate the heat flow from a warm gas to a cooler plate. Control experiments with the 
IR-inactive noble gases argon and helium show no effect, thus ruling out heat conduction as a 
likely cause of the temperature changes. 

The detection of gas radiation is not entirely straightforward, as the IR radiation from the con-
tainer significantly overwhelms the radiation from the gases, meaning that, like an iceberg, only 
the tip of the effect is visible. However, the above investigations are not just a simple demonstra-
tion of this effect; they also confirm the underlying theory through the good agreement between 
measurements and calculations, thus allowing a direct comparison of the different effects of the 
GH-gases studied. 

The concept of radiative potential must be critically examined, as methane is a weaker emitter 
than CO2 (see also Harde & Schnell [4]), and the radiation intensity of nitrous oxide is only 1.5 
times greater. A 25- or 300-times higher radiation potential compared to CO2 is misleading, as it 
is an apples-to-pears comparison and also includes the residence time. Radiative potential is a 
political term and should not be confused with effectiveness. 

The measured gas radiation depends on the concentration of these gases, but also on any remain-
ing residual water vapor concentration. As the H2O concentration increases, the gas radiation of 
the other GH-gases is overlaid, and their effectiveness is correspondingly reduced. 
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Warm air above a colder surface is not only of theoretical interest, but also occurs in nature, for 
example, during inversion weather conditions, but especially at the poles during persistent dark-
ness. Here, CO2 causes a negative greenhouse effect, which satellite measurements also show as 
a hump in the 15 µm wavelength range, or around 670 cm-1, instead of the familiar CO2 funnel 
(Schmithüsen et al., 2015 [12]; van Wijngaarden & Happer 2025 [13]). 

The negative greenhouse effect and the ability of GH-gases to convert heat from their surrounding 
into infrared radiation is of fundamental importance for the Earth's climate. It supports global heat 
transport between the equator and the poles, as well as vertical exchange through convection and 
evaporation. Through these mechanisms, heat in various forms can be efficiently transported to 
the tropopause and beyond, where it is ultimately radiated into space. Without this heat transport, 
the radiation balance of incoming and outgoing radiation at the upper edge of the atmosphere 
could not be maintained; and at the same time, by radiating GH-gases towards the Earth's surface, 
they protect the Earth from further cooling. Only through this can plant and animal life on Earth 
be ensured. 
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Appendix 

The laboratory is thermostatically controlled at 17°C ± 0.3 °C to prevent interference from fluc-
tuating room temperatures. The hot and cold water temperatures for heating the cylinder and cool-
ing the PC plate, respectively, are stabilized within ±0.1°C. To establish thermal equilibrium, heat-
ing and cooling are switched on 5 hours before data recording. 

Some data show a wave-like pattern, caused by the thermostat's temperature control. These fluc-
tuations are compensated for by averaging over a period of one hour before and after the addition 
of a sample gas. 

To generate cylinder air with varying humidity levels, either the laboratory air with a relative 
humidity of 64% is used, or the cylinder air is passed over solid caustic soda or damp paper for 
four hours. The water vapor content is measured with a hygrometer outside the cylinder as relative 
humidity and converted to absolute humidity g/m³. 

Table A1: Technical data 

 
Length/Height Ø: 

  
Length/Height Ø: 

Cylinder 57 cm 33 cm 
 

Calibration 
  

Dome 13 cm 33 
 

Radiation opening 34.5 cm 
heating hose 25 m 8x12 mm 

 
aluminum cover 
plate 

0.8 mm 33.5 cm 
Styrofoam top 20 cm 50 cm 

 
Plate P W 0.8 mm 22 cm 

https://web.archive.org/web/20160429061756/http://www.scipublish.com/journals/ACC/papers/download/3001-846.pdf
https://web.archive.org/web/20160429061756/http://www.scipublish.com/journals/ACC/papers/download/3001-846.pdf
Hermann Harde

Hermann Harde
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Styrofoam wall 66 cm 50 cm 
 

PI- polyimide 
film heater 

 22 cm 

    
Styrofoam over PW 20 cm 50 cm 

Plate P C 0.8 mm 36 cm 
 

Styrofoam under PW 5 cm 50 cm 
soft copper pipe 5 m 8x1 mm 

 
Laboratory power supply 
Korad ka3005d 0-30 V 

 

Styrofoam 15 cm 50 cm 
    

Radiation opening - 34.5 cm 
 

Data logger 
  

    
temperature Elitech RC4 

 

IR detectors 
   

Tension: VOLTCRAFT DL-250V 
Plate D T 0.8 mm 11.8 

    

Styrofoam 0.8 cm 11.8 
 

Thermostat: ES-10 ± 0.1°C 
Peltier elements  
10 x TES1-3104Q 

  15x15x3.4 mm 
   

 
 

DC amplifier:  
 
AD620 

 

Table A2: Distance of the sensors from the PE foil. 

sensor T5 T4 T3 T2 T1 DT DP TC 

cm 64 47 33 19 5 -14 -15.5 -15 

Table A3: Calibration of the IR sensors. 

Heating  
W 

TC  

°C 
TD  

°C 
VP  

V 

0.000 8.5 9.0 0.427 
1,202 8.8 10.4 0.694 
1,873 8.9 11.1 0.820 
2,685 9.1 12.0 0.987 
3,644 9.3 13.1 1,190 
4,740 9.5 14.2 1,392 
5,972 9.7 15.5 1,626 
7,340 9.9 16.9 1,891 
8,833 10.1 18.5 2,185 

Table A4: Heating of the cylinder, H2O ~ 0.15 vol.%. 

min 
TH  

°C 
TC  

°C 
T5  

°C 
T4  

°C 
T3  

°C 
T2  

°C 
T1  

°C 
TD  

°C 
VP  

V 

0 18 8.8 17 16.8 16.8 16.8 16.5 10.3 0.44 
20 22.6 8.9 18.1 18.2 18.2 18.2 17.7 10.5 0.51 
40 26.7 9 21 21.4 21.3 21.3 20.5 10.9 0.63 
60 30.3 9 24.1 24.4 24.3 24.3 23.3 11.5 0.75 
80 33.6 9.1 27.2 27.4 27.3 27.3 26 12.1 0.87 

100 36.6 9.2 29.9 30.1 29.9 29.9 28.5 12.6 1.00 
120 39.2 9.3 32.3 32.5 32.3 32.3 30.7 13.1 1.13 
140 41.6 9.5 34.5 34.6 34.4 34.4 32.7 13.6 1.24 
160 43.6 9.5 36.3 36.5 36.2 36.2 34.4 14 1.34 
180 45.3 9.6 38.1 38.2 37.9 37.9 35.9 14.4 1.42 
200 46.9 9.7 39.6 39.6 39.3 39.3 37.4 14.8 1.50 
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220 48.3 9.7 40.9 40.9 40.6 40.7 38.6 15.1 1.56 
240 49.7 9.8 42 42 41.7 41.8 39.6 15.4 1.63 
260 50.9 9.8 43.1 43.2 42.8 42.9 40.6 15.6 1.69 

Table A5: Heating of the cylinder, H2O = 1.1 vol.%. 

min 
TH  

°C 
TC  

°C 
T5  

°C 
T4  

°C 
T3  

°C 
T2  

°C 
T1  

°C 
TD  

°C 
VP  

V 

0 19.3 8.9 18.2 17.9 17.9 17.9 17.6 10.8 0.53 
20 23.9 9 19.3 19.2 19.3 19.2 18.7 11 0.59 
40 28.1 9 22.2 22.3 22.3 22.2 21.4 11.5 0.72 
60 31.8 9.2 25.3 25.4 25.3 25.3 24.3 12.1 0.85 
80 35.1 9.3 28.2 28.4 28.2 28.2 27 12.7 0.99 

100 38.1 9.4 30.9 31 30.8 30.8 29.4 13.2 1.12 
120 40.7 9.5 33.4 33.4 33.2 33.1 31.6 13.7 1.24 
140 43.1 9.6 35.7 35.7 35.4 35.4 33.6 14.2 1.36 
160 45.2 9.7 37.6 37.6 37.4 37.3 35.5 14.7 1.47 
180 47.1 9.8 39.4 39.4 39 39 37.1 15.1 1.57 
200 48.8 9.8 40.9 40.9 40.6 40.6 38.5 15.5 1.64 
220 50.3 9.9 42.3 42.3 41.9 41.9 39.7 15.8 1.72 
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Global Atmospheric CO2 Lags Temperature by 150 yr 

 between 1 and 1850 AD 
 

Ronald Grabyan 

Irvine, California, USA 

 

Abstract 

This study investigates whether atmospheric CO₂ precedes or lags global temperature changes 
over the past 2000 yr, using both visual and statistical analyses. A parallel evaluation of Total 
Solar Irradiance (TSI) and temperature was conducted to assess the influence of solar forcing on 
climate variability. 

Temperature, CO₂, and TSI data were drawn from many well-established publications and inter-
national climate data repositories. Original, unsmoothed series were used to identify visual mark-
ers—such as peak–trough alignments, correlative clusters, and trend concordance—while 
smoothed series (using 50-yr and 100-yr running averages and Loess filters) were employed to 
emphasize large-scale patterns and reduce local variability. Correlation analysis, conducted 
within a statistical validation framework, was applied across all data variants. 

Results show that atmospheric CO₂ consistently lags temperature by approximately 150 yr from 
1 to 1850 AD. After applying this lag correction (CO₂Lag), Pearson correlation coefficients (rPCC) 
between CO₂Lag and temperature reached Very Strong values ranging from 0.85 to 0.99. TSI–
temperature correlations were generally Strong across the full 2000 yr interval, and Very Strong 
from 1850 to present. A prominent alignment among CO₂Lag, TSI, and temperature occurs around 
1460 AD. 

These findings indicate that atmospheric CO₂ does not precede, nor appear to drive, global tem-
perature trends. Rather, CO₂ consistently lags temperature, suggesting it functions as a response 
variable rather than a primary forcing. In addition, TSI exhibits Strong to Very Strong temporal 
alignment with temperature, supporting the hypothesis that solar variability plays a significant 
role in long-term climate change. 

 

Keywords: CO2; temperature; CO2 lags temperature; total solar irradiance; last 2000 yr 
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1.  Introduction 

Understanding the role of atmospheric CO₂ in climate dynamics is a critical scientific and policy 
concern. If CO₂ is a primary driver of global temperature change, then reducing anthropogenic 
emissions becomes essential. Conversely, if CO₂ plays a lagging role, the rationale for large-scale 
mitigation strategies deserves reexamination. A rigorous, evidence-based evaluation of this rela-
tionship is needed. 

The prevailing consensus in climate science maintains that increased atmospheric CO₂—
primarily from fossil fuel combustion—drives warming of the Earth’s surface and lower atmos-
phere. This conclusion is supported by numerous studies linking rising CO₂ levels to temperature 
trends across multiple timescales. However, other peer-reviewed studies challenge this causality, 
suggesting that temperature changes lead CO₂ changes, rather than follow them (e.g., Humlum et 
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al., 2013; Chylek et al., 2018a; Sharma & Karamanev, 2021). Some of these studies show tem-
perature leading CO₂ by centuries in paleoclimate records, while others find leads of months in 
the instrumental era and millions of years in the distant paleoclimate records. 

Recent publications further support the hypothesis that temperature changes precede atmospheric 
CO₂ fluctuations. Several studies by Koutsoyiannis and collaborators (2020, 2022a, 2022b, 2023, 
2024a, 2024b) suggest that global air temperature may act as leading indicators or drivers of CO₂ 
concentration changes. 

In addition to the CO₂-temperature relationship, a wide array of natural factors has been proposed 
to explain historical temperature variability. These include: 

1. Solar variability: Total Solar Irradiance (TSI), magnetic modulation of cosmic rays, UV-
induced atmospheric chemistry, and weakening of the jet stream (Easterbrook, 2016a; 
Svensmark and collaborators, 1999,  2007, 2016, 2021, 2022; Ogurtson et al., 2002; Sha-
viv et al., 2023; Scafetta, 2023; Gray et al., 2010; Moffa-Sanchez et al., 2014; Ineson et 
al., 2011). 

2. Oceanic oscillations: The Atlantic Multidecadal Oscillation (AMO), thermohaline circu-
lation, and ENSO-like cycles (Knudsen et al., 2011; Lin & Qian, 2022; Gray, 2012; Gray 
et al., 2003; D’Aleo & Easterbrook, 2016; Doos et al., 2012; Toggweiler & Key, 2001). 

3. Planetary and orbital forcing: Changes in Earth’s eccentricity, axial tilt, and precession 
(Milankovitch cycles), as well as planetary gravitational influences (Scafetta & Bianchini, 
2022; Stefani et al., 2004; Wanner et al., 2022; Morner, 2012; Lourens & Tuenter, 2016; 
Marsh, 2014; Roe, 2006; Shackleton, 2000; Imbrie et al., 1992). 

4. Volcanism, tectonics, and extraterrestrial impacts: Volcanic aerosols, plate tectonics, and 
meteor strikes as agents of climate change (Covey et al., 1994; Dekan, 2021; Komitov & 
Kaftan, 2020; Wanner et al., 2022; Vinos, 2024a; Vinos, 2024b; Vevard & Veizer, 2019). 

Multiple studies across diverse timescales have found that CO₂ tends to lag temperature. For in-
stance: 

1. Ice core records from the last 420 kyr show lags of 300 to 2300 yr (Mudelsee, 2001; Cail-
lon et al., 2003). 

2. Monnin et al. (2001) reported a lag of ~410,000 yr between 11.2 and 17 kyr BP. 
3. Sharma and Karamanev (2021) found CO₂ lagging temperature by 1020–1080 yr over the 

last 650 kyr. 
4. Middleton (2011) postulated a 250-yr lag of CO2 to temperature during the Little Ice Age. 
5. Instrumental records from 1980–2011 show CO₂ lagging SST and air temperatures by 9 

to 12 mo (Humlum et al., 2013). 
6. Monthly datasets for the 1960–2016 period show average lags of 4 to 5 mo (Adams & Pi-

ovesan, 2005; Chylek et al., 2018b). 
7. Koutsoyiannis (2024a) synthesized findings across multiple geological intervals, report-

ing that CO₂ consistently lagged temperature, with lag duration increasing with timescale: 
7.1. Phanerozoic: ~2.3 million yr 
7.2. Cenozoic: ~800,000 yr 
7.3. Late Quaternary: ~1200 yr 
7.4. Common Era (1–1700 AD): ~33 yr 
7.5. Instrumental Period: 3–8 months 

The consistent pattern of temperature leading CO₂ invites a reevaluation of cause-and-effect as-
sumptions in climate science. This study focuses on the Common Era, analyzing the lag relation-
ship between CO₂ and temperature using 16 global temperature proxies and 4 CO₂ proxies over 
the past 2000 yr. Both visual and statistical methods (e.g., statistically validated Pearson correla-
tion, lag testing) are employed. 
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Results show that CO₂ consistently lags temperature by approximately 150 yr across the 1–1850 
AD period. These findings hold for both the pre-1600 and post-1600 segments of the data, even 
accounting for structural breaks or regime shifts. 

Given the robust pattern of temperature leading CO₂, this analysis is extended to evaluate potential 
drivers of temperature change. Numerous studies have pointed to solar variability as a plausible 
mechanism, including changes in TSI (Scafetta, 2023; D’Aleo, 2016; Whiteet al., 1997; White, 
2000; Hoyt & Schatten, 1993; Soon, 2009; Soon & Legates, 2013; Soon et al., 2015, Li, 2022; 
Wang et al., 2020; Schmutz, 2021; Usoskin et al., 2005;  Douglass & Clader, 2002; Abdussama-
tov, 2016; Lean, 2000), solar magnetic activity (Lockwood & Stamper, 1999),  and radiative forc-
ing beyond TSI alone (Shaviv, 2008). Though satellite measurements since 1978 show only 
~0.1% variation in TSI over an 11 yr solar cycle (Willson & Hudson, 1988), longer-term changes 
since the Maunder Minimum may be as high as 0.4–0.5% (Willson, 1997; Hoyt & Schatten, 1997; 
Solanki & Fligge, 2000; Willson & Mordvinov, 2003).  

In addition to variations in TSI, several studies have proposed more indirect solar influences on 
climate. These include solar eruptions such as flares, coronal mass ejections, and high-speed 
wind streams from coronal holes (D’Aleo, 2016). Since 2001, the total magnetic flux emitted by 
the Sun has reportedly increased by a factor of 2.3, which may influence Earth's climate through 
two primary mechanisms: (1) enhanced ozone chemistry in the upper atmosphere triggered by 
ultraviolet radiation (Bard & Frank, 2006; Gray et al., 2010; Haigh et al., 2010; Ermolli et al., 
2013), and (2) ionization at higher latitudes during geomagnetic storms (D’Aleo, 2016; Lock-
wood & Stamper, 1999). In parallel, variations in cloud formation linked to galactic cosmic rays 
and solar modulation have been suggested as additional contributors to climate variability 
(Svensmark & Friis-Christensen, 1997; Svensmark, 1999, 2007, 2016, 2022; Svensmark et al., 
2021; Shaviv et al., 2023). 

Abdussamatov (2015) further argued that Earth’s temperature is influenced by the annual en-
ergy balance, incorporating factors such as TSI, oceanic thermal inertia, albedo feedback, and 
greenhouse gas concentrations. According to D’Aleo (2016), these indirect solar effects may 
significantly amplify the Sun’s role in modulating climate. 

This study evaluates solar irradiance records from multiple sources and compares them to global 
temperature over the last two millennia and selected modern periods (1659, 1850, 1880 to pre-
sent). While causation cannot be definitively established, the correlations observed suggest that 
solar energy input—direct and indirect—plays a substantial role in global temperature variability. 

Four Appendices for this study are incorporated in the Supplementary Material, including Appen-
dices A–D: (A) Data – Correlation Analysis of CO2 vs. temperature, (B) Statistical Validation 
Framework, (C) Structural Break or Regime Shift at 1600 AD, and (D) Total Solar Irradiance and 
Temperature.   

2.  Methods 

Published data from 18 studies of air temperature and five studies of CO2 across the last 2000 yr 
were used in this investigation.  Multiple proxies from across the world were utilized in these 
published studies of CO2 and temperature. For CO2, ice cores from Antarctica were used in this 
study.  For temperature, ice cores, tree rings, marine and lake sediment, speleothem, pollen, 
Mg/Ca in fossil shells, and stalagmites, and others, were also used in these studies.   

Data from the published studies were either obtained from the respective authors, downloaded 
from public repositories or digitized from the published papers utilizing an online digitizing pro-
gram, Graph Grabber v2.0.2 (Quintessa Limited, 2020) – all with permission.  Each temperature 
study was compared to each CO2 study (64 pairs in the main body of this report – Data Set A and 
Data Set B). 
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Results of rPCC data analysis for Data Set A and Data Set B, for data ranges of 200-1600 AD and 
1000-1600 AD are presented in Supplementary Material, Appendix A. 

The research plan of this paper includes using Pearson Correlation Coefficients obtained by eval-
uating each pair of CO2 and temperature time-series data obtained from various published studies, 
both in original form, data smoothing transformations, and with CO2 at a range of lags from -200 
to +200 yr in an interval of 10 yr.  Therefore, it is important to discuss the potential weaknesses 
of this approach as presented by Koskinas et al. (2022) and Koutsoyiannis (2024c), as well as the 
potential strengths.  These studies address the strong time-dependence of such data, especially of 
long-range memory type (Hurst-Kolmogorov dynamics) where the probability distribution of rPCC 
is potentially heavily modified by the presence of long-range dependence (LRD).  Long memory 
processes imply persistent autocorrelation that can inflate apparent statistical significance of 
cross-correlations and cause unreliable p-values.  

The well-described concerns regarding long-range dependence (LRD) in paleoclimate CO₂ and 
temperature data — as outlined by Koskinas et al. (2022) and Koutsoyiannis (2024c) — are 
fully acknowledged, and these concerns center on the potential inflation of correlation coeffi-
cients when applied to nonstationary or persistent time series.  However, based on a structured 
series of diagnostic tests and methodological guard rails (herein termed Statistical Validation 
Framework, as described below), I consider the conditional use of Pearson Correlation Coeffi-
cient (rPCC) both acceptable and informative within the context of this study and pending the re-
sults of the SVF (Beran, 1994; Granger & Joyeux, 1980). The following measures support this 
judgment: 

1. Alignment of time-series by calendar-year, with a consistent shift 150 yr earlier in time 
applied to CO2, testing the hypothesized delayed or lagged response to temperature 

2. Multiple smoothing levels (Original, RA 100, multiple Loess) applied to isolate persistent 
structure while at the same time observing inflation risk 

3. Visual inspection of CO2 and temperature curve alignment which in most cases depicts 
strong shape and change similarity consistent with lagged response, including alignment of 
peaks and troughs 

4. Max-r-lag testing across a broad range of lag intervals (-200 to +200 yr) to identify the peak 
r-correlations with physical lags (generally at an interval of 10 yr) 

5. Statistical Validation Framework: 

       5.1  Autocorrelation Tests:  
 5.1.1  Durbin-Waston Test (Durbin & Watson, 1950) 
 5.1.2   Breusch-Godfrey Test (Breusch, 1978; Godfrey, 1978) 
 5.1.3   Ljung-Box Q-Test (Ljung & Box, 1978) 

       5.2  Hurst Exponent Analysis: 
 5.2.1   Rescaled Range (R/S) (Hurst, 1951) 

5.2.2   Detrended Fluctuation Analysis (DFA) (Peng et al., 1994) 
5.2.3   Geweke-Porter-Hudak Spectral Estimation (GPH) (Geweke & Porter- 

 Hudak, 1983) 

5.3  Heteroskedasticity and Autocorrelation Consistent Standard Errors (HAC SE)          
(Newey & West, 1987) 

5.4  Effective Sample Size (Neff) (Newey & West, 1987; Bretherton et al., 1999) 

5.5  Block Permutation Results (Politis & Romano, 1994) 

5.6  False Discovery Rate Methods (Globally Grouped) (Benjamini & Hochberg, 1995) 

           A complete discussion of these tests with their results can be found in Supplementary Ma-
terial, Appendix B, in the context of the Statistical Validation Framework (SVF) -- valida-
tion of correlation significance under dependence, autocorrelation, and long-memory 
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conditions. 

Total Solar Irradiance (TSI) data were analyzed and compared to the temperature data utilized in 
this study in order to observe potential correlations.  11 TSI studies were included, and six tem-
perature studies from 1659, 1850 and 1880 were included to address the near-term timeframe of 
200 to 400 yr as well as the last 2000 yr timeframe. 

Visual graphical analysis, in conjunction with various smoothing algorithms, assisted in the qual-
itative and semi-quantitative search for understanding the relationship in our climate of: 

CO2 and temperature 
TSI and temperature 

The methods process of this study is identified and followed as shown in detail below: 

1. Each data set (from published sources) was evaluated in its original state and processed 
with a straight-line interpolation algorithm resulting in a data set of whole number years 
with an interval of one, unless it was already presented as such. 

2. Each resulting data set was graphed as comparison graphs of every CO2-temperature pair. 
Vertical axes adjustments were made to overlay the graphs to similar curve amplitudes in 
order to visually compare the curves. 

3. The average lag of CO2 to temperature was determined to be about 150 yr, based on a max-
lag analysis with a range of -200 to +200 yr – the CO2Lag curves were added to the charts 
with original non-smoothed CO2 and non-smoothed temperature. 

4. In order to remove noise and other more granular data influences, and reveal larger trends, 
each data set was smoothed in Excel Professional 2019, using 4 algorithms: 

4.1. Running Average, centered on 50 yr (RA 50) 
4.2. Running Average, centered on 100 yr (RA 100) 
4.3. Loess Smoothing Algorithm – less smoothing (Loess 1) 
4.4. Loess Smoothing Algorithm – more smoothing (Loess 2) 

 Loess (Locally Estimated Scatterplot Smoothing) is an Excel plugin, non-parametric lo-
cally weighted smoothing algorithm, with a smoothing parameter and the number of years 
for the quadratic moving regression (Peltier Tech, 2024).   

5. Several iterations of selecting the appropriate Loess smoothing parameters were con-
structed in order to have resulting curves which had similar amplitude and frequency.  If 
these two elements of the curves are not compatible, they may not reflect the true relation-
ship of the curves, and statistical correlation could be poor and misleading.  Note a larger 
number of data points (yr) in the Loess smoothing parameter will remove noise and other 
local features providing a broader, more regional view of the data.  When smoothing data, 
the smoothed result is reflecting the impact of up to several hundred yr surrounding each 
data point (yr), and the localized nature of the original data will influence the smoothed 
curves.  Thus, detailed temporal analysis with smoothed curves should be conducted with 
caution. 

6. Pearson Correlation Coefficient (rPCC) was calculated conditionally for each data pair of 
CO2 and temperature, where there were data values at each year of both curves (64 sets for 
Data Set A and Data Set B)—data ranges 200-1600 AD, 1000-1600 AD, and 1600-1850 
AD. An in-depth lag analysis approach was implemented where an rPCC was calculated for 
each lag between -200 yr and +200 yr, and the maximum rPCC was selected with its corre-
sponding lag, along with an rPCC at 0-lag, as well as rPCC.  These calculations resulted in 
tables and graphs of rPCC as a function of lag correction, thus identifying the CO2 lag year 
with the highest correlation. All rPCC values are considered conditional as previously 
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mentioned.  For this study the following correlation coefficient strength ranges are utilized 
for general strength of correlation: 

rPCC > 0.00 and rPCC < 0.20 None 
rPCC > 0.20 and rPCC < 0.40 Weak 
rPCC > 0.40 and rPCC < 0.60 Moderate 
rPCC > 0.60 and rPCC < 0.80 Strong 
rPCC > 0.80 and rPCC < 1.00 Very Strong 

7. Based on the general outline of the Statistical Validation Framework (SVF) described 
above, the detailed methodology and results are presented in Supplementary Material, Ap-
pendix B. 

8. All statistical analyses were conducted using R (R Core Team, 2024) and Python 3.10 (Py-
thon Software Foundation). Analyses utilized the following libraries: numpy, scipy, pandas, 
and matplotlib in Python, and zoo, car, and nlme in R (Harris et al., 2020; Hunter, 2007; 
McKinney, 2010; Virtanen et al., 2020; Wickham, 2016; Zeileis & Grothendieck, 2005; 
Zeileis & Hothorn, 2002).  Data alignment and preliminary Pearson correlation analyses 
were also implemented in Microsoft Excel using custom Visual Basic for Applications 
(VBA) scripts, which matched paired CO₂ and temperature values by calendar year (Mi-
crosoft Corporation, 2022). These routines served as independent verification of the pri-
mary results computed in R and Python. All figures in this study were created using Mi-
crosoft Excel’s charting tools. 

9. The data was separated into three main categories: (1) range 200-1600 AD, (2) range 1000-
1600, and (3) range 1600-1850 AD.  This is due to the presence of a structural break, pos-
sibly the result of a regime-shift at 1600 AD.  This is discussed in Section 3.2 and in Sup-
plementary Material, Appendix C.  The data in the range 1600-1850 AD was treated more 
rigorously due to the character of CO2 post-1600 AD.  The following data transformation 
steps applied to both CO2 and temperature for this range, except where noted, are followed: 

9.1. 50-yr centered running average – applied to suppress short-term fluctuation and em-
phasize low-frequency variability (Jones & Mann, 2004). 

9.2. Cubic Transformation – utilized to amplify long-term fluctuations and nonlinearly en-
hance larger variations in the CO2 time series.  This emphasizes major deviations while 
preserving the sign of the data, a paleoclimate technique used to highlight signal dy-
namics (Moberg et al., 2005). 

9.3. Standard Linear Detrending – fits a straight line to the data using least squares regres-
sion which isolates the stationary fluctuation component at the same time eliminating 
monotonic drift (Mann, 2004; Mudelsee, 2010)  

9.4. Normalization (min-max, 0-1) – Each series was subsequently normalized to the (0,1) 
interval using min-max scaling.  This process allows for direct visual and statistical 
comparison of series with different magnitudes while preserving the relative shape of 
each curve (Wilkes, 2011). 

This data was then processed for rPCC and lag values prior to tabulating and charting the results.  
Results are tabulated in Supplementary Material, Appendix A, Table A23. 

10. Graphs of the original curves were produced showing the original curves and lagged orig-
inal curves.  Graphs of the smoothed curves were produced showing smoothed CO2, 
smoothed temperature, and smoothed lagged CO2 by the amount identified by the strongest 
correlation analysis and related lag, which usually corresponded to the visual correlation. 
Smoothing included Running Average (RA 50 and RA 100) and a matrix of Loess (level 1 
and level 2).  Documented on each graph is the recording of conditional rPCC (max at lag) 
and rPCC at 0-lag, as well as significance qualification from the SVF. 
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11. For the data range 200-1600 AD, a composite graph was produced with the top 8 smoothed 
temperature curves; all 4 of the ice-core-based lag-corrected CO2 curves; an average curve 
of the temperature curves; and an average of the CO2Lag curves. 

12. Pearson Correlation Coefficient (rPCC) was calculated conditionally between the two aver-
age curves of temperature and lag-corrected CO2 (at the peak of CO2lag correction). 

13. TSI data and temperature data were utilized in this study in order to observe potential cor-
relations and possible causation (correlation does not automatically equate to causation) 
(Supplementary Material, Appendix D). Visual graphics and statistical correlation tech-
niques were applied to this data as described previously. 

3.  Results 

3.1 Data Results - CO2 vs. Temperature (200-1600 AD and 1000-1600 AD) 

Pearson Correlation Analysis, rPCC, and lag analysis were conducted on all pairs of CO2 and tem-
perature data analyzed in this study – both Data Set A and Data Set B (Supplementary Material, 
Appendix A).  This included calculating rPCC for all combinations of four published CO2 data sets 
and 16 published temperature data sets (eight in each set) covering varying ranges between two 
major data ranges (200- 1600 AD, and 1000-1600 AD) for five smoothing transformation algo-
rithms: 

1. Original data (Orig) 
2. Running Average – 50 (RA 50) 
3. Running Average – 100 (RA 100) 
4. Loess Smoothing 1 (Loess 1) less smoothed 
5. Loess Smoothing 2 (Loess 2) more smoothed 

This approach calculated the following for each transformation level of the data: 
1. rPCC (no lag of CO2 to temperature) 
2. rPCC (maximum rPCC) (calculated from -200 to +200 lag yr in 10-yr intervals) 
3. lag (lag interval at the maximum rPCC) 
4. Averages of each calculated parameter per CO2 and temperature source 

In Supplementary Material, Appendix A, Fig. A1 shows the lag value at the maximum rPCC de-
picted for a pair of CO2 and temperature series – Rubino et al. (2019) and Yang et al. (2002).  
Typical of almost every pair of CO2 and temperature lag analysis curve analyzed in this study, 
the curve resembles a normal or slightly log-normal curve where the correlation-lag values climb 
rather smoothly from 0, or negative, rPCC to a peak of maximum rPCC at a lag in the general average 
range of +150 yr.  The curve then declines at a similar pace to the incline to 0, or negative rPCC.  
This pattern is extremely consistent.  While the average is about a 150 yr CO2 lag, various data 
combinations at different smoothing transformations range from about 100 to about 200 CO2 lag 
to temperature. 

The following tables in Supplementary Material, Appendix A, contain the results organized as 
follows: 
 Data Set A Data Set B  
 Table  Table  Transformation  Range 
 Table A1   Table A12 Original       200-1600 AD 

Table A2  Table A13 Original   1000-1600 AD 
Table A3   Table A14 RA 50      200-1600 AD 
Table A4   Table A15 RA 50    1000-1600 AD 
Table A5   Table A16 RA 100     200-1600 AD 
Table A6 Table A17 RA 100   1000-1600 AD 
Table A7 Table A18 Loess 1     200-1600 AD 
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Table A8 Table A19 Loess 1   1000-1600 AD 
Table A9   Table A20 Loess 2     200-1600 AD 
Table A10 Table A21 Loess 2   1000-1600 AD 

Tables A11 (Data Set A) and A22 (Data Set B) (as shown in Supplementary Material, Appendix 
A) identify the smoothing transformation parameters utilized, specifically the parameters for the 
Loess method.  A general overview of the data in Tables A1 through A11 (as shown in Supple-
mentary Material, Appendix A) are summarized in Table 1.  The separation of results into the 
ranges (200-1600 AD and 1000-1600 AD) are predicated on a couple of factors: 

1. Two of the four CO2 data sets have data from well-before 1000 AD and the other two 
commence at around 1000 AD.  Likewise, 10 of the 16 temperature data sets begin well 
before 1000 AD, and the other six commence around 1000 AD. 

2. It appears there was a more sparsely sampled original sampling rate by the published au-
thors pre-1000 AD than post-1000 AD, creating some uncertainty with the earlier data. 

3. The calculated rPCC data from the range of 200-1600 AD was consistently lower by about 
0.20 than the data from the range of 1000-1600 AD. 

A general overview of the data in Tables A12 through A22 (as shown in Supplementary Material, 
Appendix A) are summarized in Table 2.   

Table 1.  Summarizes the conditional rPCC and lag data for Data Set A and five transformational levels 
(Original, RA 50, RA 100, Loess 1, and Loess 2) for two data ranges (200-1600 AD and 1000-1600 AD). 
This summary is based on the results shown in tables A1-A11 in Supplementary Material, Appendix A. 

Summary of rPCC Analysis 
       Data Set A                                                                            

No Lag rPCC and Maximum rPCC with Corresponding Lag 
Five Transformation Levels and two Data Ranges (200-1600 AD, 1000-1600 AD)  

  
Average 
rPCC(no 

lag) 

 Average 
rPCC(max 

lag) 

Average        
lag 

Range        
rPCC(no lag) 

Range         
rPCC (max 

lag) 

Range            
lag 

Original 
            

      200-1600 AD -0.05 0.52 151 -0.38 to 0.16 0.47 to 0.57 90 to 180 

    1000-1600 AD 0.17 0.76 135 -0.13 to 0.38 0.60 to 0.92 60 to 160 

RA 50       

      200-1600 AD 0.02 0.66 152 -0.37 to 0.27 0.57 to 0.79 120 to 180 

    1000-1600 AD 0.30 0.87 132 0.07 to 0.60 0.77 to 0.96 60 to 170 

RA 100 
            

      200-1600 AD 0.04 0.71 153 -0.40 to 0.33  0.59 to 0.82 120 to 163 

    1000-1600 AD 0.45 0.91 128 0.08 to 0.81 0.81 to 0.95 80 to 160 

Loess 1             

      200-1600 AD -0.01 0.61 151 -0.41 to 0.33 0.52 to 0.78 120 to 200 

    1000-1600 AD 0.25 0.85 132 -0.15 to 0.52 0.69 to 0.97 70 to 160 

Loess 2             

      200-1600 AD 0.02 0.68 155 -0.39 to 0.38 0.56 to 0.80 120 to 200 

    1000-1600 AD 0.35 0.92 127 -0.01 to 0.76 0.77 to 0.98 80 to 160 

Averages             

    200-1600 AD 0.00 0.64 152 -0.39 to 0.29  0.54 to 0.75  114 to 184  

    1000-1600 AD 0.30 0.86 131 -0.03 to 0.61  0.73 to 0.96  70 to 162  
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Table 2.  Summarizes the conditional rPCC and lag data for Data Set B and five transformational levels 
(Original, RA 50, RA 100, Loess 1, and Loess 2) for two data ranges (200-1600 AD and 1000-1600 
AD). This summary is based on the results shown in tables A12-A22 in Supplementary Material, Ap-
pendix A. 

Summary of rPCC Analysis 
       Data Set B                                                                            

No Lag rPCC and Maximum rPCC with Corresponding Lag 
Five Transformation Levels and two Data Ranges (200-1600 AD, 1000-1600 AD)  

  
Average 

rPCC           

(no lag) 

 Average 
rPCC       

(max lag) 

Average        
lag 

Range        
rPCC              

(no lag) 

Range         
rPCC     

(max lag) 

Range            
lag 

Original 
            

      200-1600 AD -0.24 0.41 154 -0.47 to -0.10 0.25 to 0.48 150 to 160 

    1000-1600 AD 0.08 0.59 128 -0.23 to  0.64  -0.10 to 0.87 100 to 200 

RA 50       

      200-1600 AD -0.32 0.47 152 -0.56 to 0.19 0.32 to 0.57 140 to 170 

    1000-1600 AD 0.18 0.70 138 -0.16 to 0.77 0.15 to 0.95 120 to 160 

RA 100 
            

      200-1600 AD -0.33 0.50 154 -0.57 to -0.19  0.36 to 0.60 140 to 170 

    1000-1600 AD 0.30 0.74 125 -0.19 to  0.87 0.19 to 0.96 70 to 160 

Loess 1             

      200-1600 AD -0.32 0.47 154 -0.56 to -0.17 0.44 to 0.57 130 to 180 

    1000-1600 AD 0.09 0.71 132 -0.37 to  0.69 0.15 to 0.95 70 to 180 

Loess 2             

      200-1600 AD -0.32 0.52 161 -0.55 to -0.17 0.38 to 0.64 140 to 190 

    1000-1600 AD 0.19 0.77 118 -0.41 to  0.88 0.26 to 0.98 50 to 180 

Averages             

    200-1600 AD -0.31 0.47 155 -0.54 to -0.09  0.35 to 0.57  140 to 174  

    1000-1600 AD 0.17 0.70 128 -0.27 to  0.77  0.13 to 0.94  82 to 176  
 

The data in Table 1 and Table 2 reveal the following observations: 

1. The original data (Orig) rPCC (max) is consistently lower than the four smoothed transfor-
mations (RA 50, RA 100, Loess 1, and Loess2) by about 0.14 (200-1600 AD) and 0.13 
(1000-1600 AD).  rPCC (0-lag) is lower by about 0.07 (200-1600 AD) and 0.17 (1000-1600 
AD).  These numbers are from Data Set A.  Data Set B shows the same trend with slightly 
smaller values.  However, the Orig rPCC (max)is 0.52 and 0.76, respectively, for the longer 
and shorter ranges of Data Set A, which are Moderate and Strong correlations.  For Data 
Set B, the Orig rPCC (max) values are 0.41 and 0.59 for the longer and shorter ranges re-
spectively.  Thus, the original data, without smoothing and with a larger noise component, 
still record significant conditional correlation values. 

2. The RA 50 series is similar, but the values tend to lie between Orig and RA 100 which is 
consistent with the gradational nature of increasingly smooth character. The RA 50 rPCC 
(max) is 0.66 and 0.87, respectively, for the longer and shorter ranges of Data   Set A, which 
are Moderate and Strong correlations.  For Data Set B, the RA 50 rPCC (max) values are 
0.47 and 0.70 for the longer and shorter ranges respectively. 
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3. The rPCC values (no lag) vs. the rPCC values (max lag) are always significantly lower for 
every transformation method, for both data ranges, and for every CO2-temperature corre-
lation pair.  The average differential in Orig rPCC (max) (200-1600 AD) is 0.57 for Data Set 
A, and 0.65 for Data Set B.   The average differential in Orig rPCC (max) (1000-1600 AD) 
is 0.59 for Data Set A, and 0.51 for Data Set B.  The change in correlation strength is from 
None to Very Strong, thus emphasizing the lack of correlation from a statistical perspective 
for the no lag case.  

4. While the average Orig CO2 lag to temperature of both Data Sets A and B is about the same 
for the 200-1600 AD range, 151 and 154 yr respectively, and likewise for the 1000-1600 
AD range, 135 and 128 yr, the range of lag is about 100 to 200 yr with a tighter cluster 
between 130 and 170 yr respectively.  For the Orig data the average lag is about 153 yr and 
132 yr, respectively, while for the RA 50 data the average lag is about 152 yr and 135 yr, 
respectively.   

5. As shown below in the Original Charts (Fig. 1 and Fig. 2) of CO2 and temperature, the most 
likely lag is about 150 yr based on prominent markers. Thus, the conditional rPCC (max) 
values for Original and RA 150 at the full data range of 200-1600 AD (156 and 152) seem 
to be a close match to the physical chart of the data even with a higher degree of noise 
component. 

6. Observations regarding the shorter and younger range of 1000-1600 AD versus the longer 
range of 200-1600 AD: 

6.1. rPCC (max) lagged data for 1000-1600 AD has a consistently higher rPCC average dif-
ferential of 0.23 compared to the 200-1600 AD range. 

6.2. While all of the rPCC values of the data with no lag are very low, 200-1600 AD is 
consistently lower than 1000-1600 AD: 0.07 at 0.47. 

6.3. The CO2 lag to temperature is recoding about 23 yr higher for the longer range than 
the shorter range.  

6.4. The rPCC correlations may be somewhat lower for the 200-1600 AD period, although 
still showing at least Moderate strength of correlation, due to a probable lower sam-
pling rate by the various researchers in the range of 1-1000 AD.  Also, the Little Ice 
Age (LIA) is identified as ranging from 1300-1850 AD (Mann et al., 1999), but as 
shown in Fig. 1, temperature begins to steeply decline around 1100 AD and completes 
its rebound around 1900 AD.  The dynamics of the LIA may have been a factor. 

7. Running Average (RA 100) with significantly lower smoothing factor than Loess1 or Lo-
ess2, records similar rPCC values for the respective ranges of 200-1600 AD and 1000-1600 
AD.   

8. It is observed the rPCC for the longer range, ≈ 200 to 1600 AD, is always a bit lower than 
the rPCC for the shorter range (Table 1).  There are several possible reasons for this result.  
The data sample distribution in most of the published studies was sparser in the years below 
1000 AD. Having a longer-range extent will possibly introduce more inaccuracy and less 
precision.  It is possible the driving process responsible for the 150-yr lag of CO2 to tem-
perature may fluctuate somewhat over time. 

9. Loess 2 appears to show the highest rPCC compared to the other transformations. 

10. Generally, regarding the different sources of data, there does not appear to be a significant 
difference among the CO2 data sources or the temperature data sources with this view of 
the data. Two or three of the temperature sources in Data Set B do appear to be somewhat 
out of phase with the rest of the temperature data, although the major trends appear intact. 

11. Given the influence of smoothing, preprocessing, and probable auto-correlation (Long-
term memory), these rPCC correlations should be viewed as context-dependent indicators 
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rather than fixed or universal measures of the CO₂–temperature relationship.  They should 
be interpreted comparatively rather than as intrinsic measures.  The Statistical Validation 
Process described in Supplementary Material, Appendix B, should provide guidance as to 
whether the correlation analysis of individual pairs be considered significant. 

3.2   Statistical Validation Framework (SVF) Summary 

Given the well-documented concerns regarding autocorrelation, long-range dependence (LRD), 
and smoothing-induced bias in paleoclimate time series, a dedicated Statistical Validation Frame-
work (SVF) was developed and applied to all Pearson correlation results in this study. The SVF 
combines multiple diagnostic tests to safeguard against false-positive inferences and ensures that 
any reported associations between CO₂ and temperature meet rigorous statistical thresholds. 

As outlined in the Methods section and detailed fully in Supplementary Material, Appendix B, 
the SVF includes seven validation categories: (1) autocorrelation testing (Durbin-Watson (Durbin 
& Watson, 1950), Breusch-Godfrey (Breusch, 1978; Godfrey, 1978), and Ljung-Box (Ljung & 
Box, 1978)); (2) Hurst exponent analysis using R/S, DFA, and GPH methods; (3) HAC (Het-
eroskedasticity and Autocorrelation Consistent) standard errors; (4) estimation of the effective 
sample size (Neff); (5) block permutation testing; (6) false discovery rate (FDR) correction; and 
(7) final significance classification based on joint criteria. The goal of the SVF is not to suppress 
correlation results but to distinguish robust signal from statistical artifact in the presence of serial 
correlation and LRD — concerns highlighted by Koskinas et al. (2022), Koutsoyiannis (2024c), 
and others. 

Out of 64 primary CO₂–temperature pairs evaluated (across multiple lags and smoothing levels), 
79 of 320 pairings passed at least one SVF statistical significance threshold, with Neff ≥ 10 or 
Neff ≥ 8. Most statistically reliable results (rPCC passing all SVF tests) occurred in unsmoothed or 
lightly smoothed datasets — especially the Original and Running Average 50 (RA 50) CO₂ series. 
A smaller number of valid results emerged from RA 100 and Loess-smoothed datasets, though 
these were treated with caution due to inflation risk. These outcomes reinforce the overall finding 
that correlation strength alone is not sufficient to infer significance without correcting for struc-
tural dependencies. 

In order to reduce serial dependence and improve the reliability of statistical inference, all corre-
lation analyses were performed on down-sampled series. All pairs were down-sampled by five 
subsets (every 1/10th, 1/20th, 1/30th, 1/40th, and 1/50th). Final selection of unique pairs was based 
on Neff value, down-sampling, and n (final sample size), and to some degree rPCC. Some pairs 
required more aggressive down-sampling depending on autocorrelation structure and overall se-
ries length. While down-sampling helps mitigate inflation of rPCC due to autocorrelation, it can 
also reduce the number of observations (n) available for correlation. To preserve meaningful sta-
tistical power, the final selection of unique, SVF-passing pairs balanced multiple criteria — in-
cluding correlation strength (rPCC), effective sample size (Neff), and actual sample count (n) as 
shown in Table B4, Supplementary Material, Appendix B. In a few cases, a slightly smaller Neff 
value was accepted in favor of a higher n value, provided all SVF thresholds were still satisfied. 
This conservative approach prioritized statistical validity while ensuring that results were not 
driven by overly small sample sizes. 

Later, sections of this paper will visually display selected CO₂–temperature pairs using smoothed 
Loess curves for interpretive clarity, but will explicitly annotate on each figure whether the un-
derlying pair passed SVF criteria in its Original or RA 50 form. A summary comparison chart 
showing Original, RA 50, and Loess curves will also be provided to highlight their structural 
similarity and justify visual interpretation. In this way, SVF results are fully transparent and inte-
grated, allowing readers to assess both statistical and visual coherence across all candidate rela-
tionships. 
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3.3 Structural Break or Regime Shift in the CO2Lag and Temperature Data at 1600 AD 

Unexpected behavior across the boundary of 1600 AD in the CO2Lag and temperature data, 
prompted testing for stability or non-stationarity in the CO₂–temperature relationship. Therefore, 
formal structural break analysis centered on 1600 AD was conducted. This breakpoint was hy-
pothesized based on a marked reduction in correlation when extending from the 200–1600 AD 
segment to the full 200–1850 AD range. It is also about the time period where CO2Lag accelerated 
higher exponentially; temperature accelerated higher; and the nadir of the Little Ice Age occurs.  
Supplementary Material, Appendix C, details the application of three diagnostic tests: (1) the 
Chow test for structural discontinuity (Chow, 1960), (2) segmented Pearson correlation analysis, 
and (3) regression slope comparison across pre- and post-1600 intervals. Results show a highly 
significant F-statistic (F = 877.23) and an ~87% drop in regression slope post-break, alongside 
the collapse of full-span correlation (r ≈ –0.06). These findings collectively indicate either a sta-
tistical phenomenon (structural break) or a large ecosystem change (regime shift) in system dy-
namics at 1600 AD, warranting the partitioning of subsequent analyses into distinct temporal 
phases. A detailed discussion with test results, about the structural break or regime shift, is pre-
sented in Supplementary Material, Appendix C.  

3.4 Data Results - CO2 vs. Temperature (1600-1850 AD) 

The data within the range of 1600-1850 AD was analyzed separately due to three previous out-
comes: 

1. The analysis of the entire range of CO2 and temperature data from 200-1850 AD 

2. The evidence of a structural break or regime shift in the data at 1600 AD shown in section 
3.2 

3. The analysis of the range of data from 200-1600 AD as shown in section 3.1 

A more robust correlation analysis approach was conducted with one transformation level of the 
data, Running Average (50-yr centered).  This was due to the structural break condition at about 
1600 AD and the exceptional steep trending slopes of both CO2 and temperature after 1600 AD.  
This approach calculated the following (Table A23 in Supplementary Material, Appendix A):  

1. rPCC (no lag of CO2 to temperature) 

2. rPCC (maximum rPCC) (calculated from -100 to +250 lag years in 5 yr intervals) 

3. lag (lag interval with the maximum rPCC) 

4. Averages of each calculated parameter per CO2 and temperature source 

Three CO2 sources and 6 temperature sources were utilized from this study. 

The following steps were followed in deriving the results: 

1. Cubic Transformation of CO2 to enhance sensitivity to relative increases (Hyndman & Ath-
anasopoulos, 2018). 

2. The cubed CO2 series was linearly detrended to remove long-term trends and better isolate 
internal variability (Granger & Newbold, 1974: Box et al., 2015). 

3. Normalization of both CO2 and temperature using min-max scaling to enable direct com-
parison.  This technique facilitates comparative analysis, particularly when applying re-
gression-based methods across differently scaled data (James et al., 2021). 

4. Smoothing via a 50-yr Running Average to reduce high frequency variability.  In correlation 
metrics smoothing improves stability while preserving decadal patterns of climate varia-
bility (von Storch & Zwiers, 1999). 

5. Lag-alignment of CO2 to temperature was calculated utilizing a lag range of -100 to 250 yr 
in 5-yr increments to determine the lag of the highest rPCC value.  This both identifies the 
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lag and tests the hypothesis of a CO2 to temperature of about 150 yr as observed with the 
data from 200-1600 AD (Granger, 1969; Mudelsee, 2010). 

6. Pearsons Correlation Coefficients were calculated conditionally, in the same manner as for 
the data range of 200-1600 AD, since autocorrelation and long-term memory are issues that 
could inflate rPCC somewhat (Beran, 1994). 

The data in 1600-1850 AD is similar to the range of 200-1600 AD in that it is autocorrelated and 
exhibits evidence of long-memory behavior, however based on the previous analysis shown in 
Supplementary Material, Appendix A, use of rPCC is considered conditionally acceptable for this 
study. 

Referring to Table A23, in Supplementary Material, Appendix A, there are a few observations 
made for this RA 50 smoothing level data: 

1. The average correlation is 0.85 at an average lag of 199 yr (range 130-250). This is a Very 
Strong correlation. 

2. The average correlation is 0.29 at No Lag, indicating the hypothesis of CO2 lagging tem-
perature by about 150 yr is strong, and not the reverse, as popularly hypothesized. 

3. The strongest lagged relationship is observed between the Juckes temperature series and 
Ahn CO2 data (rPCC = 0.99 at a lag of 210 yr). 

4. Based on the data alone, it appears the relationship of CO2 to temperature is not signifi-
cantly different between the two ranges of data (200-1600 AD and 1600-1850 AD), even 
with the structural break at 1600 AD.  CO2 lags temperature by at least 150 yr, which ef-
fectively places all of the CO2 data to present day as influenced centennially by temperature 
about 150 ys in the past. 

3.5 Graphical Results - Original CO2 and Temperature (200-1600 AD) 

Visual and correlation analysis of CO2 versus temperature results are presented utilizing many of 
the widely recognized studies of CO2 and temperature covering the past 2000 yr. 

Conditional correlation analysis in the form of rPCC has been conducted on all of the data analyzed, 
and all 5 forms including the Original data (Orig), Running Average (RA 50); Running Average 
(RA 100); Loess 1 (lesser smoothing algorithm); and Loess 2 (greater smoothing algorithm).  
Maximum rPCC – lag analysis was also conducted and results are shown on Tables A1 through 
A22 in Supplementary Material, Appendix A.  

As discussed in detail in the Supplementary Material, Appendix B, a robust statistical analysis, 
Statistical Validation Framework (SVF), has been conducted on all data in this study, and roughly 
25% of the rPCC pairs passed statistical significance at either Robustly Significant or Tentatively 
Significant. Thus, all of the charts shown will identify this status.  In many cases a chart will be 
presented at a higher smoothing factor, which itself has not passed the SVF, but one of its other 
variants has, and this status will be identified.   For example, a Loess 2 chart may be shown (not 
passed), but it is a smoothed variant of an Orig or RA 50 that has passed the full SVF, meeting 
all criteria. Rather than formal inference, the purpose of the Loess 2 Chart would be to present an 
enhanced visual expression of the validated version illustrating the temporal and structural align-
ment in a visually compelling manner, not necessarily introducing an entirely new relationship. 
In these cases, the Loess 2 chart would be labelled as “conditional”, based on the corresponding 
Orig or RA 50 SVF pass status.  This illustrates that while high smoothing can visually enhance 
apparent alignment, formal inference must rely on statistical validation.  This is consistent with 
best practices in statistical communication, where exploratory or supporting plots are distin-
guished from validated results (Kauffman et al., 2020; McGregor et al., 2013; Tufte, 2001; Gel-
man & Hill, 2006). 

Fig. 1 shows a good example of the original data of CO2 (Rubino et al., 2019) plotted against the 
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original data of temperature (Ljungqvist, 2010) from about 1 to 2000 AD.  Upon inspection, even 
with a noise component, it is apparent the two curves visually correlate very well with each other, 
but only if the CO2 curve is time-shifted 150 yr earlier to correct for the CO2 lag.  Both the original 
CO2 curve and the shifted CO2 curves reflecting the lag are shown in the figure. 

 

Figure 1. Original CO2 and temperature data (from Rubino et al., 2019; Ljungqvist, 2010, 
respectively) are shown from 1 to 2000 AD along with the CO2 curve shown with a 150-yr lag 
correction.  Aligned peaks and troughs are depicted with thin red lines.  A sharp low in CO2Lag and 
temperature are shown at about 1460 AD. rPCC is shown for lagged 150 yr and no lag for both ranges 
of 200-1600 AD and 1000-1600 AD.  Orig for this pair is directly validated under SVF, and its 
correlation is presented here conditionally, supported by the corresponding result, Robustly 
Significant (SVF passed). The complete list of SVF passed pairs is in Supplementary Material, Ap-
pendix B, Table B4.  

Visual correlations covering peaks and troughs of 50-100 yr as well as 800-1000 yr are observed 
between the two curves of CO2Lag and temperature. Aligned peaks, or peak-clusters, are observed 
at about 80, 175, 410, 490, 590, 740, 920-1100, 1240, 1300, 1360-1420, and 1500-1575 AD.  
Correlative troughs can also be observed, in particular, the deep trough at about 1460 AD.  At this 
year, with close precision, a deep trough is identified on almost every CO2Lag and temperature pair 
analyzed in this study.  

At about 1775 AD for CO2 and 1625 AD for CO2Lag, the CO2 curves take a sharp and exponentially 
high shift probably coinciding with the temperature curve which begins to increase more steeply, 
but at a much lower slope than CO2. The Little Ice Age spanning from about 1100-1300 AD to 
about 1900 AD shows its latter upward temperature recovery from about 1700 to about 1900 AD, 
as it moves out of the low point of the Little Ice Age.  

Fig. 1 also shows two broad trends of temperature: (1) peaks at about 100 AD and about 1000 
AD with a trough at about 500 AD, and (2) peaks at about 1000 AD and about 2000 AD with a 
trough at about 1500 AD.  These features may be associated with the 1000-yr cyclicity of earth 
climate indices and solar activity -- Eddy Cycle (Zhao et al., 2020).  While there is not adequate 
length of data in the temperature records presented here to define a cycle of that nature, the amount 
of data that is present is consistent with the proposed, but not proven, Eddy cycle.  However, 
below in this article, data is presented showing relative correlation between the temperature data 
curves and Total Solar Irradiance.  

Fig. 2 shows the original data of CO2 from (Rubino et al., 2019) plotted against the original data 
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of temperature from Moberg et al. (2005) for the same period in the last 2000 yr. Similar to Fig. 
1, the CO2 curve and temperature curve in Fig. 2 correlate visually only when the CO2 curve is 
shifted 150 yr. 

 

Figure 2.  Original CO2 and temperature data (from Rubino et al., 2019; Moberg, 2005, respectively) 
are shown from 1 to 2000 AD along with the CO2 curve shown with a 150-yr lag correction. Aligned 
peaks and troughs are depicted with thin red lines.  A sharp low in CO2Lag and temperature are shown 
at about 1460 AD. rPCC is shown for CO2 lagged 150 yr and no lag for both ranges of 200-1600 AD 
and 1000-1600 AD.  Orig for this pair is directly validated under SVF, and its correlation is presented 
here conditionally, supported by the corresponding result, Robustly Significant (SVF passed). The 
variant, RA 50, is also SVF-validated at Tentaatively Significant, passed with caution. The complete 
list of SVF passed pairs is in Supplementary Material, Appendix B, Table B4.    

While evaluating the original published data included in Fig.1 and Fig. 2, even with a high noise-
level component, certain key common observations can be made: 

1. The CO2Lag of about 150 yr with temperature, is consistent and representative of all 64 
original pairs of CO2 versus temperature data in this study. 

2. The CO2Lag curve is interrupted by a shift in the CO2 curves at about 1600 AD (1750 AD 
on the CO2 non-lagged curve).  While CO2 accelerates rapidly from this point, temperature 
climbs, but at a lower rate.  This observation is consistent with all 64 data correlations.   

3. Many peaks and troughs, and peak-trough clusters, of varying widths from 10 yr to 150 yr, 
appear to visually correlate between the CO2Lag and temperature curves. 

4. There is a sharp notched decline of both CO2Lag and temperature at about 1460 AD with a 
width of 50 yr to 80 yr.  This distinctive feature appears as a signature marker on all 64 
correlations of CO2Lag and temperature.   

5. A potential long cycle is observed on the temperature curves (shadowed by the CO2Lag 
curves) with peaks at about 100, 1000, and 2000 AD, and troughs at about 550 and 1500 
AD, with a frequency cycle of about 1000 yr.  This appears to very closely shadow the 
proposed Eddy Cycle for this range of data (Zhao et al., 2020).  A longer data record show-
ing these repeatable features with several major peaks and troughs would be desirable. 
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3.6.  Graphical Results - Smoothed CO2 and Temperature (200-1600 AD) 

Fig. 3 presents five curves representing all smoothing transformation variants for a specific tem-
perature series, (Hegerl, 2007), which shows the degree of variation in the charted curves typical 
of all of the series in the study.  The Orig (violet) curve is the original published data which 
generally has more noise.  However, this curve retains the sharper peaks and troughs which rep-
resent key markers, such as the marker at 1460 AD which is observed on almost all of the curves 
in this study: CO2LAG at 150 yr, temperature, and Total Solar Irradiance (TSI).  The RA 50 (black) 
curve is the least-smoothed of the transformed curves, but retains the major peaks and troughs 
while shedding the minor noise. The RA 100 (red) curve is often very close to the Loess 1 (green) 
curve in character, and maintains the more major peaks and troughs while shedding the minor 
ones.  The Loess 2 (blue) curve is the most smoothed, and generally reflects the more regional 
trends, while it smooths away the noise and smaller more granular features. 

Figure 3. Presents five forms of the temperature series, Hegerl et al., 2007: Original published data, 
Orig; Running Average centered on 50 yr, RA 50; Running Average centered on 100 yr, RA 100; 
smoothing algorithm, Loess 1 (Loess, 0.178, 250); and smoothing algorithm, Loess 2 (Loess, 0.356, 
500). 

As displayed below in Fig. 4, on the Running Average (RA 50) chart, the visual correlation is 
excellent for the two curves — (1) Ljungqvist (2010) temperature (blue) and (2) Rubino et al. 
(2019) CO2Lag (red). The CO₂Lag curve is time-shifted 150 yr earlier to correct for the lag.  This is 
shown by the curves tracing each other from 200 to 1600 AD. The original CO2 curve represented 
by a dashed light gray curve is clearly out of synch with the temperature curve.  Several thin 
vertical red lines are drawn to highlight close orientation of many of the peaks and troughs show-
ing more granular alignment.  The general curvature aligned between the two curves over 2000 
yr is easily apparent.  From 1600 AD to about 1850 AD, the lagged-CO2 and temperature curves 
also track on steep inclinations with CO2lag having a slightly steeper slope. Similar to the Original 
curves in Fig. 1, the visual correlation is excellent as are the conditional rPCC correlation numbers.  
For the data range 1000-1600 AD the rPCC is stronger.  The comparison of the CO2Lag vs. no lag 
is striking with rPCC showing 0.81 and 0.28 for the data range of 1000-1600 AD and 0.67 and 0.06 
for the data range of 200-1600 AD.  This sharp differential of Strong correlation to No correlation 
agrees with the visual inspection of the chart where CO2 is clearly offset by 150 yr.  The running 
average smoothing, centered at 50 yr (RA 50), allows easier visual review than Orig, while the 
smoothing modifies the curve only slightly by removing noise, smaller inflections, and localized 
features.  Although RA 50 smoothing for this pair is not directly validated under SVF, its 
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correlation is presented here conditionally, supported by the corresponding Orig variant which 
passed full SVF criteria for statistical significance with Robustly Significant (SVF passed). The 
complete list of SVF passed pairs is in Supplementary Material, Appendix B, Table B4. 

 

Figure 4.  Running Average smoothing, centered 50 yr, (RA 50), CO2 and temperature data (from 
Rubino et al., 2019; Ljungqvist, 2010, respectively) are shown from 1 to 2000 AD along with the CO2 
curve shown with a 150-yr lag correction.  Aligned peaks and troughs are depicted with thin red lines.  
rPCC is shown for 150-yr lag and no lag for both ranges of 200-1600 AD and 1000-1600 AD. Although 
RA 50 smoothing for this pair is not directly validated under SVF, its correlation is presented here 
conditionally, supported by the corresponding Orig variant which passed full SVF criteria for 
statistical significance with Robustly Significant (SVF passed). The complete list of SVF passed pairs 
is in Supplementary Material, Appendix B, Table B4.      

Another excellent example of visual correlation is a chart showing RA 100 smoothing with a Very 
Strong rPCC, as observed in Fig. 5.  Several thin vertical red lines are drawn to highlight key peaks 
and troughs.  In this chart, Rubino et al. (2019) is compared to Yang et al. (2002). The continuous 
alignment over the 2000 yr is striking when comparing the temperature (blue) to CO2Lag (red) 
curves.  The CO2Lag curve is corrected 150 yr from its original position shown by CO2 (dotted 
gray).  From 1600 AD to about 1850 AD, the lagged-CO2 and temperature curves also track on 
steep inclinations with CO2lag having a slightly steeper slope. This is similar as observed in Fig. 
4.  For the data range, 1000-1600 AD, the rPCC is stronger.  The comparison of the CO2Lag vs. no 
lag is impressive with rPCC showing 0.93 and 0.15 for the data range of 1000-1600 AD and 0.72 
and 0.13 for the data range of 200-1600 AD.  The Very Strong correlation to Weak correlation 
agrees with the visual review of the chart where CO2 is clearly offset by 150 yr. Comparisons of 
rPCC should be considered conditional, as mentioned previously. Even though RA 100 is not di-
rectly validated under SVF, Orig and RA 50 for this pair are both directly validated, and the rPCC 
correlation is presented here conditionally, supported by the corresponding result, Robustly Sig-
nificant (SVF passed). Smoothing visually enhances apparent alignment, but should be statisti-
cally validated for formal inference. The complete list of SVF passed pairs is in Supplementary 
Material, Appendix B, Table B4.    

Loess smoothing was applied to all pairs of CO2 and temperature as well as all pairs of CO2Lag 
and temperature in this study.  Two levels of Loess were applied, somewhat subjectively.  Loess 
1 tends to be close to RA 100, while Loess 2 is smoother, and tends to eliminate more local 
features, accentuating the larger-scale features.   
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Figure 5.  Running Average smoothing, 100 yr, centered, CO2 and temperature data (from Rubino et 
al., 2019; Yang et al., 2002, respectively) are shown from 1 to 2000 AD along with the CO2 curve 
shown with a 150-yr lag correction.  Aligned peaks and troughs are depicted with thin red lines.  rPCC 
is shown for CO2 lagged 150 yr and no lag for both ranges of 200-1600 AD and 1000-1600 AD.  
Although RA 100 is not directly validated under SVF, Orig and RA 50 for this pair are both directly 
validated, and the rPCC correlation is presented here conditionally, supported by the corresponding 
result, Robustly Significant (SVF passed). Smoothing visually enhances apparent alignment, but should 
be statistically validated for formal inference. The complete list of SVF passed pairs is in 
Supplementary Material, Appendix B, Table B4.   

As discussed previously, rPCC is used conditionally in this study due to autocorrelation and long-
memory issues, although mitigated with various tests and methods (SVF).  It should be noted that 
one of the concerns with autocorrelation and long-memory is an inflation of rPCC, which is exhib-
ited in the data, where rPCC is increasingly larger from Original to RA 100 to Loess 1 to Loess 2.  
However, visually comparing the curves where higher rPCC values are found does show commen-
surately closer visual correlation.  Comparing the relative values of a maximum rPCC at an ob-
served lag for CO2Lag against rPCC for the no lag case will not be an issue.  It subjectively appears 
that the increase in rPCC as additional smoothing is applied, for the data in this study, is due to a 
combination of the two factors—some inflation due to autocorrelation and long memory effects 
and a resulting closer correlation for the broader more regional aspect.  In either event the ap-
proach discussed previously in applying a battery of statistical tests associated with the Statistical 
Validation Framework appears to add confidence to using the rPCC data more quantitatively when 
the correlated pairs pass either as Robustly Significant (SVF passed) or Tentatively Significant 
(SVF passed with caution) (in Supplementary Material, Appendix B, Table B4). 

Four typical examples of smoothed data are shown respectively in Fig. 6, based on Loess 2 
smoothed data by Rubino et al. (2019) and Ljungqvist (2010), Fig. 7, based on Loess 2 smoothed 
data by Rubino et al.  (2019) and Yang et al. (2002), Fig. 8, based on Loess 2 smoothed data by 
MacFarling Meure et al. (2006) and Hegerl et al. (2007), and Fig. 9, MacFarling Meure et al. 
(2006) and Yang et al. (2002).  The smoothed curves show a very close visual relationship be-
tween CO2Lag and temperature.  Large scale rolling peaks and troughs exhibit strong visible cor-
relation, and the conditional correlation rPCC values are Very Strong as labelled on the figures.  
The CO2Lag curves have both been corrected by 175 (Fig. 6), 150 (Fig. 7), 120 (Fig. 8), and 150 
(Fig. 9) yr for CO2 lag, respectively, as indicated by correlation analysis as a function of lag 
correction (Tables A9 and A10, Supplementary Material, Appendix A). 
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Figure 6.  Loess 2 smoothing, CO2 and temperature data (from Rubino et al., 2019; Ljungqvist, 2010, 
respectively), are shown from 1 to 2000 AD along with the CO2 curve shown with a 175 yr lag 
correction. Aligned peaks and troughs are depicted with thin red lines.  rPCC is shown for CO2Lag lagged 
175 yr and no lag for both ranges of 200-1600 AD and 1000-1600 AD. Although Loess 2 smoothing 
for this pair is not directly validated under SVF, its correlation is presented here conditionally, 
supported by the corresponding Orig variant which passed full SVF criteria for statistical significance 
with Robustly Significant (SVF passed). High smoothing visually enhances apparent alignment, but 
should be statistically validated for formal inference. The complete list of SVF passed pairs is in 
Supplementary Material, Appendix B, Table B4.      

 
Figure 7.  Loess 2 smoothing, CO2 and temperature data (from Rubino et al., 2019; Yang et al., 2002, 
respectively), are shown from 1 to 2000 AD along with the CO2 curve shown with a 150-yr lag 
correction. Aligned peaks and troughs are depicted with thin red lines. rPCC is shown for CO2Lag lagged 
150 yr and no lag for both ranges of 200-1600 AD and 1000-1600 AD. Although Loess 2 smoothing 
for this pair is not directly validated under SVF, its correlation is presented here conditionally, 
supported by the corresponding Orig and RA 50 variants which passed full SVF criteria for statistical 
significance with Robustly Significant (SVF passed).  High smoothing visually enhances apparent 
alignment, but should be statistically validated for formal inference.  The complete list of SVF passed 
pairs is in Supplementary Material, Appendix B, Table B4.  
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Figure 8.  Loess 2 smoothing, CO2 and temperature data (from MacFarling Muere et al., 2006; Hegerl 
et al., 2007, respectively), are shown from 1 to 2000 AD along with the CO2 curve shown with a 120-
yr lag correction. Aligned peaks and troughs are depicted with thin red lines. rPCC is shown for CO2Lag 
lagged 120 yr and no lag for both ranges of 200-1600 AD and 1000-1600 AD. Although Loess 2 
smoothing for this pair is not directly validated under SVF, its correlation is presented here 
conditionally, supported by the corresponding Orig and RA 50 variants which passed full SVF criteria 
for statistical significance with Robustly Significant (SVF passed).  Its correlation is also supported by 
the corresponding Loess 1 variant which passed SVF criteria for statistical significance with 
Tentatively Significant (SVF passed with caution).  High smoothing visually enhances apparent 
alignment, but should be statistically validated for formal inference.  The complete list of SVF passed 
pairs is in Supplementary Material, Appendix B, Table B4. 

 
Figure 9.  Loess 2 smoothing, CO2 and temperature data (from MacFarling Meure et al., 2006; Yang et al., 2002, 
respectively), are shown from 1 to 2000 AD along with the CO2 curve shown with a 150-yr lag correction. Aligned 
peaks and troughs are depicted with thin red lines. rPCC is shown for CO2Lag lagged 150 yr and no lag for both ranges 
of 200-1600 AD and 1000-1600 AD. Although Loess 2 smoothing for this pair is not directly validated under SVF, its 
correlation is presented here conditionally, supported by the corresponding Orig and RA 50 variants which passed full 
SVF criteria for statistical significance with Robustly Significant (SVF passed).  High smoothing visually enhances 
apparent alignment, but should be statistically validated for formal inference.  The complete list of SVF passed pairs 
is in Supplementary Material, Appendix B, Table B4.  
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On all four charts (Fig. 6, Fig. 7, Fig. 8, and Fig. 9) at about 1600 AD show an exponential rate 
of increase in CO2Lag and temperature, as does the corresponding CO2 curve at about 1750 AD, 
whereas the temperature curve depicts a much smaller rate of increase. All four charts identify 
with one to two variant curves that have passed the SVF as Robustly Significant, while one chart 
added a third pass, Tentatively Significant, passed with caution.  High smoothing visually 
enhances apparent alignment, but should be statistically validated for formal inference as thes 
charts signify.  The complete list of SVF passed pairs is in Supplementary Material, Appendix B, 
Table B4.  

Fig. 10 presents another chart of CO2, CO2Lag, and temperature with pairs at Loess 2 with a 130-
yr lag of CO2lag. This particular pair had three variants of which two have Robustly Significant 
(SVF passed) variants, Orig and RA 50.  The other variant, RA 100, is Tentatively Significant 
(SVF passed with caution).  The visual correlation is quite good, substantiating the rPCC and SVF 
results.  This chart includes Rubino et al. (2019) CO2 data and Hegerl et al. (2007) temperature 
data with excellent visual correlation and commensurate correlation data. 

 

Figure 10.  Loess 2 smoothing, CO2 and temperature data (from Rubino et al., 2019; Hegerl et al., 
2007, respectively), are shown from 1 to 2000 AD along with the CO2Lag curve shown with a 130-yr 
lag correction. Aligned peaks and troughs are depicted with thin red lines. rPCC is shown for both 
analyzed ranges of 200-1600 AD and 1000-1600 AD.  Although Loess2 for this pair is not directly 
validated under SVF, its correlation is presented here conditionally, supported by the corresponding 
variants RA 100, Tentatively Significant (SVF passed with caution), and RA 50 and Orig, both  Robustly 
Significant (SVF passed).   

In summary, the graphical results for smoothed CO2 and temperature data in the overall range of 
200-1600 AD in this study, show a strong and reproducible visual correlation between tempera-
ture and CO2 when it is CO2 lag-corrected by about 150 yr. This relationship is consistent and 
continuous over the entire period and can be observed with the original published data and every 
variant tested (RA 50, RA 100, Loess 1, and Loess 2) for all combinations of 4 CO2 series and 16 
temperature series.  Several combinations of CO2 and temperature series are displayed the figures 
in this section of the report to show the consistency of correlation across the different published 
data. 

Pearson’s Correlation Coefficient was calculated for all pairs and variants as shown above, and 
with the confirmation of a significant number of pairs passing a rigorous Statistical Validation 
Framework process (in Supplementary Material, Appendix B), confidence can be placed in the 
results. 

Although data was not included in this section above 1600 AD due to the structural break or 
regime shift discussed in Section 3.3, data results for range 1600-1850 are presented in Section 
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3.4, and graphical results for that data range are presented in Section 3.8. 

3.7 Graphical Results – Smoothed Average CO2 and Temperature (200-1600 AD) 

All four CO2Lag smoothed data sets (Loess 2) identified in Table A10, Supplementary Material, 
Appendix A, were averaged to produce a composite CO2Lag curve.  Eight temperature data sets 
(Loess 2) also shown on Table A10, Supplementary Material, Appendix A, were averaged to 
produce a composite temperature curve.  Both the CO2 and temperature were taken from Data Set 
A.  The four CO2Lag, eight temperature, composite CO2Lag, and composite temperature curves are 
all shown on Fig. 11.  The CO2Lag curves were corrected for CO2 lag by 150 yr.  Based on the 
temperature curves, warm periods and cool periods are shaded in light orange and light blue re-
spectively.  Key visually correlated peaks and troughs between CO2Lag and temperature are shown 
in red and blue dashed lines respectively.  Named warm and cool periods over the last 2000 yr 
are identified along the base of Fig. 11 after Easterbrook (2016a). 

Fig. 11 unambiguously shows the close visual relationship of the composite curves of CO2Lag 
(corrected for CO2 lag by 150 yr) and composite temperature, as well as the non-lagged CO2 
curve, clearly out of phase with temperature.  Conditional statistical correlation supports this ob-
servation with the following rPCC data: 

Year Range:  Data:   Correlation: 

1000 – 1600 AD CO2Lag (150-yr lag) rPCC =   0.93    Very Strong 
1000 – 1600 AD CO2 (no lag)  rPCC =   0.05    None 
  200 – 1600 AD       CO2Lag (150-yr lag)        rPCC =   0.73    Strong 
  200 – 1600 AD CO2 (no lag)         rPCC =  -0.07    None 

The averaged pairs of CO2 and temperature contain similar autocorrelation and long memory 
issues that its underlying component series have, and there may be additional artificial inflation 
of correlation due to smoothing and aggregation.  However, of the 64 pairs of combinations from 
Table A10, Supplementary Material, Appendix A, 60 pairs have variants (Orig and/or RA 50) 
that have passed the SVF process as mostly Robustly Significant. In the averaged case four aver-
age CO2 and temperature pairs (Orig, RA 50, RA 100, and Loess 2) have been tested with the 
SVF, and one pair successfully passed – the Orig pair.  The results are shown in Table 3. 

Table 3.  Results of the SVF testing for the Average CO2 vs. Average Temperature records Data Set A 
are shown for the range, 200-1600 AD.  rPCC is the Pearson’s Correlation Coefficient; Samp Rate is the 
de-sampling rate to reduce the data points; n is the number of data points after de-sampling; Neff is the 
effective number of data points (Bretherton et al., 1999); Block-Perm-FDR p-values Grouped repre-
sents the process of using block permutations and grouped FDR (Fake Discovery Rate) showing p-
values; HAC SE (Heteroskedasticity and Autocorrelation Consistent Standard Errors); and SVF Pass-
ing Category. 

Results of Statistical Validation Framework Testing 

Average CO2 vs. Average Temperature Correlation 200 -- 1600 AD 

Avg CO2 &            
Temp  Pair 

rPCC 
Samp 
Rate 

n Neff 

Block-
Perm-FDR 

p-value 
Grouped 

Blocks 
Passed 

HAC 
SE 

SVF    Passing Cate-
gory 

CO2 & Temp 
(Orig) 0.63 20 71 13.5 < 0.05 1,5,10 2.91 Robustly Significant 
CO2 & Temp 
(RA 50) 0.68 20 71 5.8 < 0.05 1,5 4.55   

CO2 & Temp 
(RA 100) 0.71 30 47 4.7 < 0.05 1,5 4.89   

CO2 & Temp 
(Loess 2) 0,72 20 71 2.7 < 0.05 1,5,10 32.8   
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In Table 3 the Neff values on the Orig pair is strong, and the HAC SE value is commensurately 
low. Orig, RA 50, and RA 100, also passed on multiple blocks for FDR-grouped permutations p-
value.  The Neff values, being less than 8, are the primary reason for not passing SVF.  Although 
Loess 2 for this averaged pair scenario is not directly validated under SVF, its correlation is pre-
sented here conditionally, supported by the corresponding Orig, passing Robustly Significant 
(SVF).                       

 

Figure 11.  Smoothed Composite CO2Lag, CO2, and temperature data for the range of 1 to 2000 AD as 
well as average CO2Lag, CO2, and temperature.  Cool and warm zones observed from this study are 
delineated as well as standard geologic-named cool and warm periods.  Vertical red dashed lines 
identify visually correlated peaks between CO2Lag and temperature.  Vertical blue dashed lines identify 
visually correlated troughs between CO2Lag and temperature. Averaged rPCC values are shown for the 
lagged CO2 and non-lagged CO2 cases. Although Loess2 for this Average pair is not directly validated 
under SVF, its correlation is presented here conditionally, supported by the corresponding variant 
Orig, as Robustly Significant (SVF passed). High smoothing visually enhances apparent alignment, but 
should be statistically validated for formal inference. References: CO2: Ahn et al. (2012), Frank et al. 
(2010), MacFarling Meure et al. (2006), and Rubino et al. (2019); Temperature: Moberg et al. (2005), 
Ljungqvist (2010), Crowley (2000), Hegerl et al. (2007), Jones et al. (1998), Loehle and McCulloch 
(2008), Juckes et al. (2007), Yang et al. (2002).   
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The average curves are shown without the composite curves for clarity on Fig. 12.  The composite 
analysis confirms the individual analyses, both visually and statistically.  Over the period of 1 to 
1600 AD, CO2 does not appear to control temperature in any manner.  Rather, temperature appears 
to precede CO2 in a closely coordinated process throughout the entire time period.  This is shown 
by the visually coordinated curves of CO2Lag and temperature after the CO2 lag correction of 150 
yr. The Very Strong rPCC of 0.93 and 0.73 respectively for the two ranges analyzed, and the very 
low values of rPCC for the non-lagged CO2 data of rPCC = 0.05 and rPCC = 0.07 also contribute in 
this confirmation. 

 
Figure 12.  Smoothed Average CO2Lag, CO2, and temperature data for the range of 1 to 2000 AD.  Cool 
and warm zones observed from this study are delineated as well as standard geologic-named cool and 
warm periods.  Vertical red dashed lines identify visually correlated peaks between CO2Lag and tem-
perature.  Vertical blue dashed lines identify visually correlated troughs between CO2Lag and temper-
ature. Averaged rPCC values are shown for the lagged CO2 and non-lagged CO2 cases. Although Loess2 
for this Average pair is not directly validated under SVF, its correlation is presented here conditionally, 
supported by the corresponding variant Orig, as Robustly Significant (SVF passed). High smoothing 
visually enhances apparent alignment, but should be statistically validated for formal inference.   Ref-
erences: CO2: Ahn et al. (2012), Frank et al. (2010), MacFarling Meure et al. (2006), and Rubino et 
al. (2019); Temperature: Moberg et al. (2005), Ljungqvist (2010), Crowley (2000), Hegerl et al. 
(2007), Jones et al. (1998), Loehle and McCulloch (2008), Juckes et al. (2007), Yang et al. (2002). 
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3.8   Graphical Results – Smoothed CO2 and Temperature (1600-1850 AD) 

As discussed in Section 3.3 and detailed further in Supplementary Material, Appendix C, a struc-
tural break, consistent with a broader regime shift in climate dynamics, was identified around 
1600 AD. This apparent state transition introduces a discontinuity in the statistical behavior of 
the system, particularly in the correlation between atmospheric CO₂ and temperature. For exam-
ple, Pearson’s correlation coefficients (rPCC) are internally consistent within each period (e.g., 
200–1600 AD and 1600–1850 AD), and even generally consistent between the two periods, but 
they degrade significantly when calculated across the boundary. Periods that span this break-
point—such as 200–1650 AD or 200–1850 AD—show a marked decline in correlation strength, 
transitioning from strong to weak or nonsignificant values. To account for this discontinuity, the 
present study analyzes the two time periods separately: 

1. a pre-break interval from 200–1600 AD, and 

2. a post-break interval from 1600–1850 AD. 

The upper bound of 1850 AD was selected based on the availability of robust correlation between 
CO₂ and temperature after applying a 150-yr lag correction to the CO₂ data—consistent with lag 
patterns observed throughout this study. Beyond 1850 (i.e., post-2000 when adjusted for lag), no 
valid comparisons can be drawn due to the absence of viable lag-corrected CO₂ data. This section 
presents the graphical and statistical analyses of the 1600–1850 AD interval, highlighting key 
patterns in the CO₂–temperature relationship during this climatically transitional period. 

This section of the study investigates the conditional statistical association and visual graphical 
correlation between atmospheric CO2 concentrations and multiple paleotemperature proxies over 
the period 1600-1850 AD by employing Running Average (RA 50) smoothing with a 50-yr cen-
tered window on all series.  Three independent CO₂ records—Ahn et al. (2012), MacFarling 
Meure et al. (2006), and Rubino et al. (2019)—are analyzed against six established temperature 
reconstructions.  Data results are shown in Supplementary Material, Appendix A, Table A23.  
Key findings are summarized below (average rPCC of each temperature vs. the three CO2 series): 

Temperature        Average rPCC      Average rPCC               Average
                          No Lag          Lag Max  Lag Years 

 

Crowley (2000)   0.25   0.90         170 
Hegerl (2007)   0.46   0.96         183 
Juckes (2007)   0.43   0.99         223 
Ljungqvist (2010)  0.68   0.90         203 
Moberg (2005)   0.63   0.90         163 
Yang (2002)   0.46   0.92         193 
Overall Averages   0.45   0.90         189 

 
Significant points: 

1. There is a significant increase between the No Lag and Lagged rPCC values – the average 
correlation is 2 times higher for lagged vs. no lagged scenarios.  This is similar to the data 
from the data range 200-1600 AD. 

2. The max rPCC values (0.90- 0.99) and the no lag rPCC (0.25 – 0.68) values are both within 
the close range of the rPCC values in the data range 200-1600 AD, albeit slightly higher. 

As with other data in this study, the 1600-1850 AD data have been processed through the SVF to 
better understand the significance of the correlations. Table 4 depicts the results of the SVF.  There 
is one CO2 and temperature pair that passed the SVF in either of the two passing categories.  
Rubino CO2 (Orig) vs. Moberg Temp (Orig) passed as Robustly Significant with a Neff value 
over 10 and group-block-permutation-FDR p-value < 0.05 in at least one block. It also had an rPCC 
= 0.54, sample size of 10, and HAC SE = 150.97.  The HAC SE values were higher overall than 
the data from range 200-1600 AD possibly due to the regime change at 1600 AD and the expo-
nentially increasing rates of increase for the CO2 and temperature data commencing in this 
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timeframe. Five of the pairs exhibited Neff between 5 and 7; passed the p-value test of Grouped-
Block-Perm-FDR with values < 0.05; and all had reasonable strong sample sizes with rPCC be-
tween 0.52 and 0.80 (4 Orig and 1 RA 100).  While these five pairs did not pass the stringent 
SVF, they exhibited strong parameters.  The last three pairs are noteworthy from the perspective 
they had strong enough Neff values, but faltered in the Grouped-Block-Perm-FDR, which indi-
cates strong Neff values alone are not enough. 

As mentioned above, the goal of the SVF is not to suppress correlation results but to distinguish 
robust signal from statistical artifact in the presence of serial correlation and long-term memory 
issues.  The results from 1600-1850 AD are consistent with those of 200-1600 AD, although there 
is a much lower pass rate probably related to regime change and rapid rise in CO2 and temperature 
commencing in this time period.  Along with the visual correlations shown below, the data does 
conditionally indicate some marginal significance (Santer et al., 2000; von Storch & Zwiers, 
1999; Bretherton et al., 1999). 

Table 4.  Results of the SVF testing for the CO2 vs. temperature records from Data Set A are shown 
for the range, 1600-1850 AD .  rPCC is the Pearson’s Correlation Coefficient; Samp Rate is the de-
sampling rate to reduce the data points; n is the number of data points after de-sampling; Neff is the 
effective number of data points (Bretherton et al., 1999); Grouped-Block-Perm-FDR p-values repre-
sents the process of using block permutations and grouped FDR (Fake Discovery Rate) showing p-
values; HAC SE (Heteroskedasticity and Autocorrelation Consistent Standard Errors); and SVF Pass-
ing Category. 

Results of Statistical Validation Framework Testing 
CO2 vs. Temperature Correlations 

1600 -- 1850 AD 

Avg CO2 &            
Temp  Pair rPCC Samp 

Rate n Neff 

Grp-
Block-

Perm-FDR 
p-value 

Blocks 
Passed HAC SE 

SVF      
Passing 

Category 

Rubino CO2 (Orig)    
Moberg Temp (Orig) 0.54 10 22 12.31 < 0.05 1 150.97 

Robustly         
Significant 

Ahn CO2 (Orig)    Hegerl 
Temp (Orig) 0.84 10 16 6.18 < 0.05 1 7.68 - 

MacFarling CO2 (Orig) 
Hegerl Temp (Orig) 0.52 10 23 5.51 < 0.05 1 152.85 - 

Ahn CO2 (RA 100)           
Moberg Temp (RA 100) 0.80 10 11 5.51 < 0.05 1 41.17 - 

Rubino CO2 (Orig)             
Hegerl Temp (Orig) 0.71 10 22 5.32 < 0.05 1 10.28 - 

Rubino CO2 (Orig)            
Crowley Temp (Orig) 0.64 10 22 5.00 < 0.05 1 34.61 - 
                  

Ahn CO2 (Orig)   
Moberg Temp (Orig) 0.18 10 16 14.02 > 0.05 - 74.22 - 

MacFarling CO2 (Orig) 
Moberg Temp (Orig) 0.39 10 23 13.16 > 0.05 - 49.55 - 

MacFarling CO2 (Orig) 
Crowley Temp (Orig) 0.35 30 8 8.18 > 0.05 - 21.47 - 

 

Figure 13 presents the transformed CO₂ and temperature series from Ahn et al. (2012) and Hegerl 
et al. (2007), respectively, for the period 1600–1850 AD as RA 50. The CO2 series was cubed, 
detrended with linear regression, and normalized to a common scale from 0.0 to 1.0, and the x-
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axis extends from 1600 to 2000 AD to display the full temporal extent of the data, including lag 
alignment.  The temperature series was normalized to match the CO2 data. The purpose of this 
display style is due to the exponentially rising CO2 and temperature curves.  The transformation 
mollifies the chart without changing relationships to allow more character to be observed. The 
lag-adjusted CO₂ series (CO₂Lₐg, red), the unadjusted CO₂ series (gray dashed line), and the tem-
perature series (blue) are plotted, with the CO2Lag offset by 170 yr. Vertical reference lines mark 
visually striking coincident peaks and troughs between CO₂Lₐg and temperature, which are now 
visible due to the transformations. This alignment is quantitatively supported by a conditional 
Pearson correlation coefficient (rPCC) of 0.95, compared to a much weaker correlation of 0.48 
between the non-lagged CO₂ and temperature series.  RA 50 for this pair is not directly validated 
under SVF, nor is its Orig variant. Its correlation is presented here conditionally, supported by 
SVF showing marginal significance with marginal Neff and passing FDR, and a related pair, 
Rubino CO2 (Orig) and Moberg Temp (Orig), showing the corresponding variant, Orig, Robustly 
Significant (SVF passed). High smoothing visually enhances apparent alignment, but should be 
statistically validated for formal inference. 

 

Figure 13. Running Average, RA 50 smoothing, CO2 and temperature data (from Ahn et al., 2012; 
Hegerl, 2007, respectively), are shown from 1600 to 2000 AD along with the CO2 curve shown with a 
170-yr lag correction. CO2 is cubed, detrended with a linear regression, and normalized.between 0-1.  
Temperature is normalized between 0-1. Aligned peaks and troughs are depicted with thin red lines. 
Conditional maximum rPCC correlations at lag and rPCC at no lag are presented. Although RA 50 for 
this pair is not directly validated under SVF, nor is its Orig variant, its correlation is presented here 
conditionally, supported by SVF showing marginal significance with marginal Neff and passing FDR, 
and a related pair, Rubino CO2 (Orig) and Moberg Temp (Orig), showing the corresponding variant, 
Orig, Robustly Significant (SVF passed). High smoothing visually enhances apparent alignment, but 
should be statistically validated for formal inference.     

Figure 14 displays a very similar chart to Figure 13. The transformed CO₂ and temperature series 
from Rubino et al. (2019) and Hegerl et al. (2007), respectively, for the period 1600–1850 AD. 
The CO2 series was cubed, detrended with linear regression, and normalized to a common scale 
from 0.0 to 1.0, and the x-axis extends from 1600 to 2000 AD to display the full temporal extent 
of the data, including lag alignment. The temperature series was normalized from 0-1.  The lag-
adjusted CO₂ series (CO2Lag, red), the unadjusted CO₂ series (gray dashed line), and the tempera-
ture series (blue) are plotted, with the CO2Lag off-set by 180 yr. Vertical reference lines mark 
visually striking coincident peaks and troughs between CO₂ₗₐg and temperature, which are now 
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visible due to the transformations. This alignment is quantitatively supported by a conditional 
Pearson correlation coefficient (rPCC) of 0.97, compared to a weaker correlation of 0.43 between 
the non-lagged CO₂ and temperature series. Although RA 50 for this pair is not directly validated 
under SVF, nor is its Orig variant, its correlation is presented here conditionally, supported by 
SVF showing marginal significance with marginal Neff and passing FDR, and a related pair, 
Rubino CO2 (Orig) and Moberg Temp (Orig), showing the corresponding variant, Orig, Robustly 
Significant (SVF passed). High smoothing visually enhances apparent alignment, but should be 
statistically validated for formal inference.  

 
Figure 14.  Running Average, RA 50 smoothing, CO2 and temperature data (from Rubino et al., 2019; 
Hegerl, 2007, respectively), are shown from 1600 to 2000 AD along with the CO2 curve shown with a 
180-yr lag correction. Aligned peaks and troughs are depicted with thin red lines. Conditional 
maximum rPCC correlations at lag and rPCC at no lag are presented.  Although RA 50 for this pair is not 
directly validated under SVF, nor is its Orig variant, its correlation is presented here conditionally, 
supported by SVF showing marginal signifi-cance with marginal Neff and passing FDR, and a related 
pair, Rubino CO2 (Orig) and Moberg Temp (Orig), showing the corresponding variant, Orig, Robustly 
Significant (SVF passed). High smoothing visually enhances apparent alignment, but should be 
statistically validated for formal inference. 

Fig. 15 displays the Pearson Correlation Coefficient, rPCC, plotted against a range of CO2 lag val-
ues (-100 to 250).  The curve in this example shows a flat peak area ranging between rPCC of 0.90 
and 0.92 between lags of 160 to 195 yr.  rPCC drops off quickly in either direction before and after 
the flat peak. 

These figures highlight the very strong relationship between lag-adjusted CO₂ and temperature, 
and reinforces a critical observation: once CO₂ is corrected for its lag (~170 to 180 yr), little 
comparable data remain in the late 20th and early 21st centuries to inform centennial or millen-
nial-scale analyses. Notably, the more granular analyses by Koutsoyiannis (2024a), Humlum et 
al. (2013), Chylek et al. (2018b), and Adams and Piovesan (2005) report that CO₂ lags tempera-
ture by less than one year during the modern instrumental era. These studies typically assess 
monthly or annual fluctuations over relatively short time spans and likely capture dynamics dis-
tinct from those observed at centennial or millennial scales. 

Therefore, the lag observed in the present study from 200-1600 AD and 1600-1850 AD (~150–
170 yr) does not contradict the findings of these short-term studies. Rather, the consistent and 
strong correlation between CO₂ₗₐg and temperature throughout the last 2000 yr—using annual 
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resolution data—suggests a robust long-term relationship where temperature changes consistently 
precede CO₂ over centennial timescales. 

 

Figure 15.  Pearson Correlation Coefficient, rPCC , is plotted against CO2 lag corrections (-100 to 250, 
interval of 5 yr) for CO2 (Rubino et al., 2019) and temperature (Hegerl et al., 2007).  The peak of the 
curve depicting maximum correlation is at 180 yr of CO2 lag correction.  Correlation drops off in either 
direction rapidly after the flat peak area. 

3.9   Total Solar Irradiance (TSI) and Temperature (1-2000 AD) 

A comparative analysis was performed between multiple published reconstructions of Total Solar 
Irradiance (TSI) and temperature data spanning the past two millennia as detailed in Supplemen-
tary Material, Appendix D. Using conditional Pearson correlation coefficients with input on sig-
nificance from the SVF, both visual and statistical congruence were identified across a broad array 
of TSI reconstructions (e.g., Scafetta & Bianchini, 2022; Scafetta, 2023; Lean, 2018; Shapiro et 
al., 2011; Wu et al., 2018; Steinhilber et al., 2009) and temperature datasets (e.g., Ljungqvist, 
2010; Morice et al., 2012 [HadCRUT4]; Lenssen et al., 2024 [GISS]; Parker et al., 1992 [CET]). 
Similar to the previous conditional analysis of CO2 and temperature, this analysis accounts for 
autocorrelation and long-term memory in paleoclimatic records.  Given this caveat, Strong to 
Very Strong correlations were observed between TSI and global atmospheric temperature, rein-
forcing the hypothesis that TSI variability represents solar energy, which has been a persistent 
contributor to centennial-scale temperature dynamics. Integrating the TSI–temperature analysis 
alongside the CO₂–temperature analysis provides a more comprehensive perspective on the po-
tential dynamic relationships among solar energy, surface temperature, and atmospheric CO₂. 

4.  Discussion 

4.1  Atmospheric CO2 Lags Temperature by 150 yr 

Results from both original and smoothed datasets—derived from visual inspection and correlation 
analysis—indicate that global atmospheric CO₂ lags atmospheric temperature by approximately 
150 years over the period 1–1850 AD. Although the Industrial Revolution began around 1750 AD 
(Wilson, 2014), significant anthropogenic CO₂ emissions did not occur until roughly 1930 AD 
(Hoesly, 2018). This finding suggests that the observed lag is a natural process, as is the 
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subsequent exponential increase in CO₂Lag from ~1600 AD to the present in response to rising 
temperatures. 

Because this analysis shows that CO₂ change has continuously followed temperature change 
throughout the Common Era—including 1850–2000 AD CO₂ changes that reflect temperature 
changes from 1700–1850—there is no evidence for a fundamental change in the CO₂–temperature 
relationship over the last 150 years. 

Figures 11 and 12 summarize the smoothed CO₂Lag and temperature curves, which visually track 
each other closely from 1–1600 AD. Figures 13 and 14 show a similar close correspondence from 
1600–1775 AD. In all four figures, vertical dashed lines (red for peaks, blue for troughs) mark 
the synchronous occurrence of every identified peak and trough in CO₂Lag and temperature over 
nearly 1800 years. 

The combined evidence indicates that CO₂ does not exert a primary control on Earth’s tempera-
ture over this time period; rather, it closely tracks temperature with a lag of ~150 yr. The analysis 
also reveals a structural break or regime shift around 1600 AD, coinciding with both the nadir of 
the Little Ice Age (Maunder Minimum) and a solar energy minimum, which corresponds to the 
observed temperature low and subsequent rapid increase in both temperature and lag-corrected 
CO₂. Between 1600 and 1850, the visual and statistical correlations between CO₂Lag and temper-
ature are strong. 

The original CO₂ and temperature curves (Figs. 1–2), along with RA 50 (Fig. 4) and RA 100 (Fig. 
5) series, strongly agree with the Loess smoothed-curve analyses (Figs. 6–10). All original da-
tasets exhibit a pronounced concurrent drop in temperature and CO₂Lag around 1460 AD, with a 
narrow 50–80 yr width. This distinct feature is only apparent after applying the −150 yr CO₂ lag 
correction and is further supported by: 

1. Long-term patterns: The data suggest a possible millennial-scale cycle, with peaks near 
100, 1000, and 2000 AD, and troughs around 550 and 1450 AD (~1000 yr frequency). Both 
CO₂Lag and temperature appear to track this pattern, which aligns with proposed solar ac-
tivity cycles such as the Eddy Cycle (Abreu et al., 2010; Zhao et al., 2020) and Hallstatt 
Cycle (Steinhilber et al., 2010). Longer datasets would be required to confirm a true cycle. 

2. Shorter-term variability: Numerous visually correlated peaks, troughs, and peak–trough 
clusters are evident throughout 1–1850 AD, on timescales of 10–100 yr. 

This mirrored relationship between CO₂Lag and temperature appears at multiple temporal scales: 

1. Macro-scale (~2000 yr): millennial cycles 

2. Meso-scale (10–100 yr): decadal–centennial variability 

3. Micro-scale (months): as documented by other studies 

For example, Humlum et al. (2013) found that monthly CO₂ lags global SST by 11–12 mo and 
global air temperature by 9.5–10 mo (1980–2011 instrumental data). Monnin et al. (2001) identi-
fied a ~410 yr CO₂ lag during 11.2–17.0 kyr BP. Sharma and Karamanev (2021) reported a 1020–
1080 yr lag over the last 650 kyr (max rPCC = 0.837). Koutsoyiannis (2024a) demonstrated varying 
CO₂–temperature lags at multiple geologic periods, from 2.3 Myr in the Phanerozoic to 3–8 mo 
in the modern instrumental era. 

Collectively, these findings, combined with the ~150 yr lag identified here, suggest that different 
but related processes drive the CO₂–temperature lag at different timescales. Humlum et al. (2013) 
proposed that near-surface ocean temperatures are a primary cause for short-term lags. The mil-
lennial-scale lag found by Sharma and Karamanev (2021) may reflect deeper ocean processes. 
Adams and Piovesan (2005) further proposed that monthly lags may involve internal biogeo-
chemical cycles and tropical temperature influences. 

4.2  Statistical Validation Framework 

The inclusion of rPCC analysis in concert with the visual correlation of CO2Lag (150 yr) and 
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temperature and the visual correlation of TSI and temperature is based on a robust correlation 
testing framework, Statistical Validation Framework (SVF).  It is implemented to assess statistical 
reliability of observed correlations between lag-adjusted atmospheric CO₂ proxies and tempera-
ture reconstructions as well as Total Solar Irradiance (TSI) and temperature. The analysis incor-
porates block permutation testing (10,000 iterations) across multiple block sizes, HAC-consistent 
standard errors, and both global and grouped FDR corrections to rigorously control for autocor-
relation and long memory. Passing pairs were filtered based on effective sample size (Neff), yield-
ing results classified as Robustly Significant (Neff ≥ 10) or Tentatively Significant (Neff 8–10), 
providing a conservative assessment of correlation reliability across time series with complex 
temporal structure.  The SVF has successfully identified key correlation pairs that show signifi-
cance through the camouflage of dependence, serial correlation, and long memory. 

4.3  Role of the Oceans in the Relationship of CO2 to Temperature 

Humlum et al. (2013) states that changes in ocean temperatures appear to explain most of the 
changes in atmospheric CO2 during the 1980 to 2011 period, especially changes in Southern 
Ocean temperature.   

Ocean processes and the carbon cycle are potential areas to investigate the possible explanations 
for the lag of CO2 to temperature, especially deep ocean carbon sinks (Wang et al., 2024), atmos-
pheric CO2 ventilation (Yu et al., 2023), and the global ocean conveyor circulation (Toggweiler 
& Key, 2001).  For the 150-yr CO2 lag identified in this study, the answer may be related to deeper 
ocean processes as well as biogeochemical processes.  It has been established by many researchers 
that CO2, as part of the carbon cycle, is absorbed in the ocean as a carbon sink, when the temper-
ature of the water is cool, and conversely, CO2 is released into the atmosphere when the temper-
ature of the water is warm (Easterbrook, 2016b), but the process is more complex as noted by 
(Wang et al., 2024), (Yu et al., 2023), and (Toggweiler & Key, 2001). Additional investigation is 
required to establish the process causing CO2 to lag temperature, but the facts, as outlined in this 
study and the studies (Adams & Piovesan, 2005; Chylek et al., 2018b; Humlum et al., 2013; 
Monnin et al., 2001, Caillon et al., 2003; Mudelsee, 2001; Koutsoyiannis, 2024a; and Sharma & 
Karamanev, 2021), identify that CO2 lags temperature at all major timeframes: months, tens of 
years, hundreds of years, hundred  thousands of years, and even millions of years. These studies, 
as well as this study, also identify that CO2 does not influence temperature. 

4.4  Total Solar Energy (TSI) correlates with Temperature 

This study and others have established that atmospheric CO2 lags both atmospheric and sea sur-
face temperature. The next important question is the source of influence on the temperature of the 
oceans and atmosphere.  Accordingly, this study has evaluated the data from several TSI papers 
and compared these with temperature data assessed in this study.  The time period covers the last 
2000 yr and the last few hundred years respectively. 

Fig. D1, in Supplementary Material, Appendix D, defines a very close correlation between tem-
perature (Ljungqvist, 2010) and TSI (Shapiro et al., 2011) as evidenced by the tight visual tracking 
and Very Strong conditional statistical correlation (rPCC = 0.79 for the range of 5 to 1994 AD; rPCC 
= 0.91 for the range of 1000 to 1994 AD).  Causation cannot be proven from a chart such as this, 
but it is difficult to imagine how solar energy does not play a major role in control of atmospheric 
temperature from consistent results that span 2000 yr.  It is probably a matter of determining the 
characteristics of the solar energy which is the major influencer.  Fig. D2, in Supplementary Ma-
terial, Appendix D, utilizing three different TSI studies (Steinhilber et al., 2010; Lean, 2018; Wu 
et al., 2018) shows TSI versus the Average Temperature curve (Fig. 12) taken from averaging 
temperature from eight temperature studies. While the visual correlation is quite compelling, and 
the correlation analysis is Strong (rPCC = 0.61 to 0.62 for the range of 5 to 1994 AD; rPCC = 0.65 
to 0.75 for the range of 1000 to 1994 AD), the differences in Fig. D2, in Supplementary Material, 
Appendix D, compared to Fig. D1, in Supplementary Material, Appendix D, identify a slightly 
greater variability and less precision. 
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Switching the timeframe to the 250-yr range, Fig. 19 depicts TSI data from Scafetta (2023) com-
pared to three temperature data sets collected instrumentally.  These data are maintained by the 
Met Office Hadley Centre in Great Britain and are smoothed using Loess in this study: (1) Had-
CRUT4 (atmospheric temperature) (Morice et al., 2012), (2) HadSST3 (sea surface temperature) 
(Kennedy et al., 2011a; Kennedy et al., 2011b), and (3) CET (Legacy version) (atmospheric tem-
perature of central England) (Parler et al., 1992).  These data present as highly visually correlated 
on the chart and have a Very Strong statistical correlation ranging from rPCC = 0.84 to rPCC = 0.92.  
Thus, it appears the same results are evident regarding the close correlation of TSI and tempera-
ture both at very short and granular timeframes of 200 yr to longer periods of 2000 yr.   

In Fig. D4, in Supplementary Material, Appendix D, all three temperature curves appear to trend 
sharply upward from about 1995 through 2023, whereas the TSI curve makes a significant lower 
turn.  This appears to be somewhat discordant with the rest of the entire curve comparison from 
1800 to present. One possible explanation has been proffered by several researchers as an artifact 
of five factors, especially for the years since 1995, which are: 

1. Urban Heat Effect – a well-known result of temperature measurement stations being lo-
cated in cities, airports, and urban areas exhibiting a significant increase of temperature 
over the ambient baselines as much as 0.45 degrees C. (Scafetta, 2021; Soon et al., 2023; 
Katata et al., 2023; Spencer, 2024; Watts, 2012) 

2. Multiple questionable data adjustments since 2000 AD by organizations responsible for 
temperature repositories, such as NOAA, NASA, and Met Office Hadley Centre.  The ad-
justments have typically increased parts of the temperature record by as much as 0.2 to 0.4 
degrees C. (McKitrick, 2010; US Historical Climatological Network, 2024; Watts, 2012; 
Wallace et al., 2017) 

3. Reduction of temperature stations by as much as 25% or more in mostly rural areas and a 
practice of populating the removed stations data with calculated estimates. (McKitrick, 
2010; Wallace et al., 2017) 

4. Natural temperature-enhanced forcing from large El Nino events (Douglass & Christy, 
2009; Vinos, 2024b; Cobb et al., 2003) 

5. An underwater volcanic eruption in 2022, Tonga, which increased water vapor in the global 
atmosphere by 10%, causing a sharp increase in global temperature, which will take several 
years to dissipate (Bielfeld, 2023; Vinos, 2024a; Vinos, 2024b; Lee & Wang, 2022). 

The significant steep trough of TSI at about 1460 yr AD shown in Fig. 20 for all 4 TSI studies at 
a slight smoothing, is also replicated on all of the temperature and CO2Lag data sets shown in Fig. 
1, Fig. 2, Fig. 4, and Fig. D5, in Supplementary Material, Appendix D.  This marker, at 1460 AD, 
coupled with the overall visual and statistical correlations of these data, emphasize the relation-
ship of these data to each other. 

A strong correlation of TSI and atmospheric global temperature over a 2000-yr period is probably 
not a coincidence.  Solar energy either plays an integral part in controlling temperature on the 
earth, or another forcing agent influences both solar energy and temperature. Perhaps, a third 
option is possible, where solar energy plays a major role in controlling temperature in concert 
with other agents (Scafetta, 2023).  Some of these agents could include ocean and atmospheric 
pressure processes (D’Aleo & Easterbrook, 2016) such as the Atlantic Multidecadal Oscillation 
(AMO) (Knudsen et al., 2011), El Nino Southern Oscillation (ENSO) (Trenberth, 2016), or Ther-
mohaline Ocean Circulation (THC) (Toggweiler & Key, 2001), among others (D’Aleo & Easter-
brook, 2016). Cloudiness appears to be a significant contributor as well, as it appears to be con-
trolled by solar magnetic modulation of cosmic rays (Svensmark et al., 2021; Svensmark et al., 
2016; Svensmark, 2007). Volcanism also seems to correlate with temperature decreases as shown 
over the Little Ice Age (1250-1860 AD) (Wanner et al., 2022).  On a larger scale, orbitally-driven 
insolation forcing, mainly precession and obliquity, can have influence (Wanner et al., 2022; Lo-
renz et al., 2006). Another indirect impact of TSI is solar-driven weakening of the jet stream 
causing colder temperatures in the northern hemisphere (Schwander et al. 2017; Moffa-Sanchez 
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et al., 2014; Ineson et al., 2011). However, based on the strong visual and statistical correlations 
between TSI and temperature over short, medium, and longer time periods (2000 yr) shown in 
this study, it appears that solar energy is most probably a significant component, either directly 
or indirectly, in concert with other natural processes previously mentioned, controlling the tem-
perature of the earth. 

5. Conclusions 

Atmospheric CO2 clearly lags global temperature by about 150 yr over the timeframe of 1 to 1850 
AD as shown by both visual and conditional statistical correlations (Very Strong) using all 16 
atmospheric temperature studies compared with all 4 CO2 studies for both original data and 
smoothed data.   

Total Solar Irradiance (TSI) correlates both visually and statistically (conditional) with the data 
from the large number of temperature studies utilized in this paper: 

1. Six TSI data sets compared to temperature from Ljungqvist (2010) and the Average Tem-
perature from 8 atmospheric temperature studies over the last 2000 yr (Strong rPCC). 

2. Two additional TSI data sets compared to five shorter-term temperature data sets in the 
timeframe of 1850 to present (Very Strong rPCC). 

Along with many other correlated data curve artifacts such as peaks and troughs, a striking down-
ward dip at the year, 1460 AD, is observed on all related data: 

1. Atmospheric temperature 

2. CO2Lag of 150 yr 

3. Total Solar Irradiance 

The Statistical Validation Framework (SFV) supported the conditional use of the rPCC values for 
comparative purposes based on a robust testing process taking into account dependence, autocor-
relation, and long-term memory issues.  

Atmospheric CO2 does not precede temperature, nor does it control temperature as shown in this 
study over the last 2000 yr. The same conclusions have been reached in the study by Koutsoyian-
nis (2024a) coving several geologic time periods (e.g. Modern Period, Common Era, and Phan-
erozoic) over varying degree of CO2 lag.; Humlum et al. (2013) for the monthly timeframe in the 
time period of 1980 to 2010, for 9 to 12 mo; Chylek et al. (2018b) between 1960 and 2016 for 
monthly data for 5 mo; and Adams and Piovesan (2005) between 1960 and 2004 for monthly data 
for 4 mo.  The study by Sharma and Karamanev (2021) reached the conclusion CO2 lags temper-
ature by over 1000 yr over the last 650,000 yr.  

It appears temperature, especially ocean temperature, plays a major and significant role in the 
consistent change of atmospheric CO2, either directly or indirectly, with other oceanic processes.  
TSI correlates strongly with atmospheric temperature over the last 2000 yr (rPCC is Strong) and 
over the shorter period of the last 200 yr (rPCC is Very Strong) lending more evidence that solar 
energy plays a significant role in the temperature change of the earth. 

Thus, a likely scenario for earth’s climate change is driven by solar energy controlling tempera-
ture, directly or indirectly, and temperature controlling CO2 somewhat modified by other climate 
factors. As such, this progression is likely influenced to some degree by several other wide-rang-
ing processes from disparate sources such as: orbital-driven insolation forcing; vulcanism; change 
in cloudiness due to solar magnetic modulation of cosmic rays; planetary gravity; earth global 
and orbital mechanics; solar sub-processes; ocean circulation, oscillations, and cycles; atmos-
pheric pressures; polar vortexes; solar-driven weakening of the jet stream; and others. 
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Global Warming and the “impossible” Radiation Imbalance 
  

Ad Huijser 

 
Abstract  

Any perturbation in the radiative balance at the top of the atmosphere (TOA) that induces a net 
energy flux into- or out of Earth’s thermal system will result in a surface temperature response 
until a new equilibrium is reached. According to the Anthropogenic Global Warming (AGW) 
hypothesis which attributes global warming solely to rising concentrations of Greenhouse gases 
(GHGs), the observed increase in Earth’s radiative imbalance is entirely driven by anthropogenic 
GHG-emissions. 

However, a comparison of the observed TOA radiation imbalance with the assumed GHG forcing 
trend reveals that the latter is insufficient to account for the former. This discrepancy persists even 
when using the relatively high radiative forcing values for CO2 adopted by the Intergovernmental 
Panel on Climate Change (IPCC), thereby challenging the validity of attributing recent global 
warming exclusively to human-caused GHG emissions. 

In this paper, Earth’s climate system is analyzed as a subsystem of the broader Earth Thermal 
System, allowing for the application of a "virtual balance" approach to distinguish between an-
thropogenic and other, natural contributions to global warming. Satellite-based TOA radiation 
data from the CERES program (since 2000), in conjunction with Ocean Heat Content (OHC) data 
from the ARGO float program (since 2004), indicate that natural forcings must also play a signif-
icant role. Specifically, the observed warming aligns with the net increase in incoming shortwave 
solar radiation (SWIN), likely due to changes in cloud cover and surface albedo. Arguments sug-
gesting that the SWIN trend is merely a feedback response to GHG-induced warming are shown 
to be quantitatively insufficient. 

This analysis concludes that approximately two-thirds of the observed global warming must be 
attributed to natural factors that increase incoming solar radiation, with only one-third attributable 
to rising GHG-concentrations. Taken together, these findings imply a much lower climate sensi-
tivity than suggested by IPCC-endorsed Global Circulation Models (GCMs). 

 

Keywords: Global Warming; Radiation Imbalance; GHG-forcing; Climate Sensitivity; Ocean 
Heat Content. 
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1. Introduction 

In spring 2024, the Royal Dutch Metrological Institute (KNMI) published a new webpage cen-
tered around a picture of the growth in the radiation imbalance full of suggestive lines to make a 
claimed “acceleration” in global warming visible. Determining accelerations over periods of a 
few years in a climate with a relaxation time to changes of 3 to 5 years however, tends to specu-
lation. The picture used, is taken from a paper with the title “Global warming in the pipeline” by 
Hansen et al [2]. These authors use even much longer relaxation times, based on the analyses of 
Global Circulation Models (GCMs). They claim that our climate is governed by processes 
strongly delaying the warming effects of forcings coupled to the growing concentration of Green-
hous gasses (GHGs) like CO2. Their paper warns for future warming, even if we stop with the 
anthropogenic emissions now. At the same time, it is used as a justification for the very high 
climate sensitivities and accordingly, long relaxation times that these GCMs deliver. To help ex-
plain the significant difference between their GCM’s output with much higher temperature trends 
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than that are being (yet?) observed, they distinguish different climate sensitivities, a fast and a 
slow one. A rather complex concept for what is, at its core, a relatively simple thermal system. 

This “relative simplicity” doesn’t apply to localized weather phenomena, which even exhibit cha-
otic behavior. However, on a global scale and over longer periods of time, the average surface 
temperature of our climate system reacts similarly to that of a thermal system such as a pot of 
water on a stove: when the incoming heat is steady and below boiling, the system stabilizes when 
the heat loss (via radiation and convection) equals the input. Analogously, Earth's surface-atmos-
phere interface is the main absorber and emitter of heat. Reducing the "flame" (solar input) leads 
to cooling, regardless of the total heat already stored in the system. The system’s average temper-
ature will drop as well, as soon as the heating stops. So, no sign of any “warming in the pipeline” 
for such a simple system. 

Yet Earth’s climate system is inherently more complex due to its scale and the dynamics intro-
duced by Earth's rotation and orbit. Solar heating occurs only half the time at any given location, 
and the Earth’s surface is in constant rotation, with the solar heating peak moving at speeds of up 
to 0.5 km/s. Heat is therefore continuously redistributed across the globe via lateral atmospheric 
and oceanic flows. Averaged over time, these transports move heat from the Tropics (where most 
solar radiation is absorbed) to the Poles (which receive far less solar energy), with approximately 
80% of the 5 PW carried by wind and the remainder by ocean currents [3]. These fluxes are 
partially equalizing the huge differences in the amount of incoming Solar radiation. Around the 
Equator, the radiation imbalance is highly positive, with about 40 W/m2 more Sunlight coming in 
than Long-Wavelength radiation going out. Around the Poles we see the opposite, with a substan-
tial negative balance in the order of about 100 W/m2 by a higher flux out, than in. In average there 
is a (near) radiation balance that can be easily influenced by variations in both lateral heat flows. 
Consequently, changes in the amount of heat carried and/or changes in the path along which that 
heat is being transported, can easily influence the average surface temperature. Often, such 
changes are conveniently interpreted by AGW-proponents as being the result, rather than the 
cause of global warming. Those anthropogenic GHG-driven effects are by some even coupled to 
induce irreversible changes in our climate at so-called tipping points.  

The two transport mechanisms, air and ocean, operate on different timescales. Air has a low spe-
cific heat capacity, but high wind speeds make it a fast medium for heat transfer. Oceans, by 
contrast, have a high specific heat capacity but move more slowly. The Atlantic Meridional Over-
turning Circulation (AMOC) with the well-known Gulf Stream carrying warm water from south 
to north, can reach speeds up to about 3 m/s. But its warm current remains largely confined to 
surface layers due to limited solar radiation penetration and gravity-induced stratification. With a 
path-lengths of up to 8,000 km and an average speed of 1.5 m/s, ocean heat takes approximately 
2 months to travel from the Gulf of Mexico to the Arctic. This is comparable to the 1 to 2 months 
delay between solar input and temperature response in the annual cycle, suggesting that oceanic 
heat transport is part of the climate system’s normal operation. Climate adaptation times from 
anthropogenic influences are estimated at 3 to 5 years. If “warming in the pipeline” exists, it must 
be buried in the much colder, deeper ocean layers. 

ARGO float data since 2004 show substantial annual increases in Ocean Heat Content (OHC), 
sometimes expressed in mind-boggling terms such as 10²² joules per year (see Fig.1). While this 
may sound alarming [1,2], when converted to flux, it represents less than 1 W/m², a mere 0.6% 
of the average 160 W/m² of absorbed solar energy at the surface. All the rest is via evaporation, 
convection and ultimately by radiation sent back to space after globally being redistributed by 
wind and currents. 

Although longwave back-radiation from the atmosphere penetrates only a few micrometers into 
ocean water, GHG-induced atmospheric warming will affect the ocean’s top layer (~ 50 – 100 m 
thick) by affecting its cooling. Below this layer, temperatures drop rapidly, and any excess heat 
is stored in deeper ocean layers where it remains for centuries due to poor conductivity and stable 
stratification. 
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This raises the question: Why would extra GHGs that have only a limited effect on the 99.4% of 
the outgoing flux, have affected this 0.6% residue during a couple of decennia in such a way that 
we should be scared about all that “warming in the pipeline” as Hansen et al. [2] are warning us 
for? In the following sections, we examine data showing that observed trends in the radiation 
imbalance and OHC are better explained by the internal dynamics of the Earth’s thermal system 
and natural forcings such as from increasing solar radiation, rather than solely by GHG emissions. 

 
2. Climate balance in perspective 

2.1. The ideal picture 

A thermal system, such as a pot of water on a stove, reaches equilibrium when energy input 
matches energy loss. Analogously, Earth’s thermal system absorbs shortwave (SW) solar radia-
tion and emits longwave (LW) radiation. The average incoming solar flux at the top of the atmos-
phere is about 340 W/m², but due to Earth’s albedo of 0.3, only about 240 W/m² enters the climate 
system. Although just 160 W/m2 is actually absorbed at the surface, that SWIN-flux determines 
the system’s temperature, characterized by the averaged surface temperature TS. This is reached 
when the cooling flux LWOUT sent to space equals the influx from the Sun SWIN, resulting in a 
constant climate with dTS/dt = 0.  

In fact, our cooling is realized through the transfer of heat from the surface to space, by a combi-
nation of long-wavelength (LW) radiation, convection and latent heat by evaporation of water. 
During its path through the atmosphere, that integral flux is finally all transferred into radiation 
by GHGs, mainly water vapor and CO2. That radiation leaves our climate system to space as 
LWOUT because there are no thermal flows possible anymore at TOA. We can forget here about 

Fig. 1. Ocean Heat Content (OHC) anomaly from 0–2000 meters over time, shown as 3-month and annual moving 
averages (CMAA), along with their time derivatives. Notable are the relatively large variations, likely reflecting the 
influence of El Niño events. The average radiative imbalance at the top of the atmosphere (TOA), estimated at 0.85 
W/m², corresponds approximately to the midpoint of the time series (around 2015). Data: 
https://www.ncei.noaa.gov/access/global-ocean-heat-content/basin_heat_data.html [7]. 
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the details of the transfer processes involved as changes in our climate’s parameters are relatively 
small i.e., in the order of 1% per century. Accordingly, they can all be linearized in a first-order 
approach as in the following analyses.  

The dynamics of our climate balance is illustrated in Fig.2a using a resistor-capacitor (RC) circuit:  
the heat capacity (C) of the climate system is charged by an incoming solar flux (SWIN) and 
discharges via a resistor (R), which represents all combined heat loss processes (LW radiation, 
convection and evaporation). The system reaches equilibrium when incoming SWIN and outgoing 
LWOUT fluxes match i.e., when the radiation imbalance N = (SWIN – LWOUT) = 0. Climate’s equi-
librium surface temperature T0, is then set by SWIN and R. 

Growing concentrations of GHGs increase the atmospheric resistance R to outgoing radiation, 
which upsets this balance. It is the background to the Anthropogenic Global Warming (AGW) 
hypothesis, promoted by the International Panel on Climate Change (IPCC) as the fundamental 
driver behind the observed warming since the beginning of the industrial era [8]. But, also changes 
in SWIN due to for instance clouds will have similar effect on the imbalance N, thus inducing a 
change in temperature necessary to regain balance. For a step-wise offset ∆N at t = 0, between 
incoming and outgoing radiation forcing the average temperature T0 to change to a new equilib-
rium (T0 + ∆T), the respective time-paths for surface temperature T(t) and radiation imbalance 
N(t) for t > 0 are given by:  

                                           𝑇(𝑡) = 𝑇଴ +  ∆𝑇 ൫1 − 𝑒𝑥𝑝(−𝑡/𝜏)൯                                            (1𝑎)  

                                                  𝑁(𝑡) =  ∆𝑁 ൫𝑒𝑥𝑝(−𝑡/𝜏)൯                                                      (1𝑏)  
 
where τ = RC represents the relaxation time of the thermal system. For the new equilibrium tem-
perature (T0 + ∆T) at t → ∞, we can couple ∆T to ∆N according to: 

   𝜆 ∆𝑇 = ∆𝑁                                                                       (2) 

Fig.2. Schematic thermal circuit for our Earth’ climate system, for illustration purposes only: 

a) In its most rudimentary form consisting of a heat capacitor C shunted by a resistor R coupled to a source with 
constant flux SWIN. 

b) As a more realistic circuit where the heat capacity of our climate CCL is separated from the rest of the Earth’ 
(almost infinite) heat capacity and where a small part N0 of the incoming flux is “leaking” from the climate 
system through the resistor RDO to the deep ocean layers. RDO is much larger than the resistance of the atmos-
phere RA as N0 is less than 0.6% of SWIN (see Section 2.3) 
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where λ is called a feedback parameter. Its inverse, ξ = 1/λ is our system’s climate sensitivity 
relating the ultimate temperature change ∆T to the original disturbance in the energy balance ∆N. 
The higher ξ, the larger the temperature’s reaction to a certain disturbance of the imbalance as the 
temperature at the surface “feeds” LWOUT in restoring its balance. Also, the more difficult the 
transfer from the surface to space, the longer it takes to restore the balance. In case of extra heating 
by the Sun, or reduced cooling by extra CO2, the amount of energy fed to this thermal system to 
restore balance, equals τ ∆N. The amount of heat necessary to increase the temperature equals 
C∆T, yielding the important relation: 

                                                                         𝜏 =
𝐶

𝜆
=  𝜉 𝐶                                                                        (3) 

 
As the heat capacity of our climate system can be considered a given, the climate sensitivity scales 
with the relaxation time of our climate to disturbances. The relaxation time can a.o. be inferred 
from the various radiation components as measured at TOA by the CERES-program [9], as shown 
in Fig.3 with Centered Moving Annual Averages (CMAA) to remove cyclical/seasonal variation 
in the radiation components. The strong signal modulation with peak-to-peak times of roughly 3 
years, must be indicative for the value of τ. This is far less than the 10 to 15 years for τ as the 
consequence of IPCC’s high climate sensitivity [8], or the even longer times as claimed by Hansen 
et al [2]. If those would be the reaction time of our climate to disturbances, the observed large 
variations in the radiation imbalance data as shown in Fig.3 would be completely flattened out. 

 

Fig. 3. Centered Moving Annual Averages (CMAA) of the measured radiation components at the top of the atmos-
phere (TOA): incoming shortwave radiation SWIN, outgoing longwave radiation LWOUT, and their difference, the 
radiation imbalance N. Linear trends are indicated. For the radiation imbalance N, a 4-year moving average (CM4Y) 
is also shown, highlighting the effect of a 3–5 years climate relaxation time. In contrast, filtering with a longer time 
constant (10–15 years), as assumed under the Anthropogenic Global Warming (AGW) hypothesis, would largely 
suppress these variations. The ENSO MEIv2 index (as CMAA) is included to illustrate the strength of El Niño, which 
is primarily responsible for large fluctuations in cloud cover and, consequently, in radiation. 
Data sources: https://ceres.larc.nasa.gov/data [9]and https://psl.noaa.gov/enso/mei/ [10] 
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2.2. Estimating our climates thermal capacity CCL 

The rather fast responses of our climate indicates that the thermal capacity of our climate must be 
much less than the capacity of the entire Earth thermal system. This climate heat capacity CCL 
depends on how sunlight is being absorbed, how that heat is transferred to the atmosphere and 
which part of it is being stored in either land or ocean. 

At continental land-area, sunlight is absorbed only at the very surface where the generated heat is 
also in direct contact with the atmosphere. Seasonal temperature variations don’t penetrate more 
that 1 to 2 meters deep in average and as a consequence, storage of heat is relatively small. 
Sunlight can penetrate pure water to several hundred meters deep, but in practice, penetration in 
the oceans is limited by scattering and absorption of organic and inorganic material. A good in-
dication is the depth of the euphotic zone where algae and phytoplankton live, which need light 
to grow. In clear tropical waters where most of the sunlight hits our planet, this zone is 80 to 100 
m deep [12].  

The equivalent thermal capacity of our oceans per unit area must therefore be much larger than 
that of land. As the equivalent heat capacity of our atmosphere equals only a few meters of water, 
this absorption zone of our oceans that also cover over 70% of the Earth’s surface, is in first-order 
a good indicator for our climate’s heat capacity CCL. 

Another important factor in our climate’s heat capacity is how this ocean layer of absorbed heat 
is in contact with the atmosphere. Tides, wind, waves and convection continuously mix the top-
layer of our oceans, by which heat is easily exchanged with the atmosphere. This mixed-layer is 
typically in the order of 25 - 100 m, dependent on season, latitude and on the definition of “well-
mixed” [13]. Below this ~100 m thick top-layer, where hardly any light is being absorbed and the 

Fig.4. Average temperature trend dT(z)/dt (blue) between 2004 and 2020 as a function of depth (0-1900 meters), for 
oceans between 65oS and 65 N. The surface temperature trend dSST/dt ≈ 0.015 K/year. The change in Ocean Heat 
Content (OHC) as a function of depth (orange) is obtained by integrating  dT(z)/dt. The OHC over the full depth is 
estimated by extrapolation of dT(z)/dt below 1500 m. The temperature trend reveals a clear separation between the 
upper ocean (the “climate layer”) and the deeper ocean. The climate layer is roughly 100 meters thick and stores 
about 20% of the total OHC. Temperature profile taken from https://www.climate4you.com/ (oceans) [14], based on 
https://argo.ucsd.edu/ [6] 
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mixing process has stopped, ocean temperatures drop quickly with depth. As the oceans’ vertical 
temperature gradient at that depth doesn’t support conductive nor convective heat flows going 
upward, climate processes at the surface will thus become isolated from the rest of the Earth’ 
thermal system.  

Figure 4 with the Change in Ocean Heat Content vs. Depth over the period 2004 – 2020 obtained 
via the ARGO-floats [6,14], offers a good indication for the average climate capacity CCL. It shows 
the top layer with a high surface temperature change according to the observed global warming 
rate of about 0.015 K/year, and a steep cut off at about 100 m depth in line with the explanation 
above. Below the top layer, temperature effects are small and difficult to interpret, probably due 
to averaging over all kinds of temperature/depth profiles in the various oceans ranging from Trop-
ical- to Polar regions. 

A 100 m thick top-layer can be attributed to a climate heat capacity CCL ≈ 13 Wyear/m2/K. That 
is consistent with a climate relaxation time τ ≈ 4 years in combination with the Planck feedback 
parameter λPL = -3.3 W/m2/K according to relation (3): λPL = -CCL/τ [4] (by convention λPL has a 
negative value, but λ = 1/ξ in the formulas applied here, is regarded as a positive parameter). 

The split between top-layer and rest of the ocean looks physically visible in Fig.4, but in fact, CCL 
is no more than an “effective” climate heat capacity. Schwartz [5] calculates this effective heat 
capacity in a different way from a regression of OHC at various depths versus TS. He concludes 
to a thermal capacity CCL = 14 + 6 Wyear/m2/K, equivalent to 110 + 50 m thick climate layer. 
The relaxation time of 5 + 1 years is derived from the autocorrelation of global mean sea surface 
temperatures. Taken together, he concludes from applying (3), to a climate sensitivity of 0.30 + 
0.14 K/W/m2, in essence equal to the inverse of -λPL as the outcome of [4]. Margins encompass 
the CCL = 13 Wyear/m2/K and τ = 4 years as above, so we stick here to those values to remain 
consistent with earlier assessments [4].  

A final remark on the heat involved in melting processes. Snow and ice increase the effective heat 
capacity of our climate as heat stored in this phase-transition cannot add anymore to warming. 
Processes like melting and freezing, occur at the atmosphere-surface interface and must be re-
garded as normal phenomena in our climate’s natural reaction to warming or cooling. Therefore, 
they are supposed to be intrinsic to the “normal” climate sensitivity ξ = 1/λ. 

 
2.3. A more realistic view on our climate’s equilibrium and the radiation balance 

In case of a “perfect” equilibrium (N = 0, dTS/dt = 0), all of the absorbed sunlight up to about 100 
m deep, has to leave on the ocean-atmosphere interface again. However, deep oceans are still very 
cold with a stable, negative temperature gradient towards the bottom. This gradient will anyhow 
push some of the absorbed heat downwards. Therefore, even at a climate equilibrium with dTS/dt 
= 0, we will observe N > 0. With the large heat capacity of the total ocean volume, that situation 
will not change easily, as it takes about 500 years with today’s N ≈ +1 W/m2 to raise its average 
temperature just 1oC. 

The Earth’s climate system can thus be regarded as a subset of the total Earth’s thermal system 
(ETS) responding to different relaxation times. The climate relaxes to a new equilibrium within 
3–5 years, while the deeper oceans operate on multidecadal or even longer timescales, related to 
their respective thermal capacities C for the ETS, and CCL for the climate system.  

The ratio C/CCL must be large. A first, too large estimate would be about 45 between the 4.5 km 
depth in average for our oceans and the 100 m top-layer of the oceans that interact in the climate 
processes with the atmosphere. The inner core of the Earth however, is still hot. This heat is 
flowing upwards to the surface where it is assumed to be somewhat less than 0.1 W/m2 [11]. The 
heat capacity of the ETS must therefore be limited to the layer above the depth where this upward 
heat flow equals the downward flow from the absorbed sunlight. The OHC-data hint to a depth 
of the ETS-capacity somewhere between 1000 and 2000 m, with an ETS-relaxation time 10-20x 
the relaxation time τ of our climate i.e, about 40 to 80 years.  
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This split up between the climate system and the Earth’ thermal system has been expressed in the 
circuit-scheme of Fig.2b where a large resistor is added not only to make the separation, but also 
the connection between these two thermal systems visible. Any surplus in the radiation imbalance 
N, goes partly into warming of the climate capacity CCL, which we experience as global warming. 
The remaining part, the flux N0, “leaks” through the large resistor RDO into the much larger heat 
capacity of the rest of the ETS. From the heat fluxes through both media (1 vs 240 W/m2) we 
must conclude that RDO >> RA. Therefore, this decoupling doesn’t make any difference for the 
surface temperature’s set-point. The dynamics of the two thermal systems characterized by τ = 
RACCL for our climate, and RAC for the ETS however, are completely different. 
 

3. The “virtual balance” N0 in the balancing act of our climate 

The heat flux N0, which leaks into the ocean's deeper layers (Section 2.3), does not contribute to 
the surface temperature and, by extension, to what we define as "climate." Still, it reflects a per-
sistent offset in the Earth’s radiation balance, even when surface temperatures appear stable i.e., 
dTS/dt = 0. This offset likely arises from slow changes in how heat is redistributed, either between 
top and bottom of the oceans and/or between Equator and Poles (see Section 1). 
Though part of the Earth’s overall thermal system, N0 acts as a virtual balance in the climate 
subsystem because it doesn’t directly impact surface temperatures. This suggests that much of the 
observed increase in Ocean Heat Content isn’t necessarily linked to changes in GHGs, as assumed 
in the AGW-hypothesis. Moreover, N0 likely varies over time due to evolving wind patterns, 
changing ocean currents, or even local geothermal fluctuations [11]. 

This concept of a virtual balance lets us rethink the dynamics of our climate system under influ-
ence of an external forcing F(t) such as from extra GHGs and/or an increase in Solar flux. The 
driving force to change the surface temperature in order to restore balance is proportional to the 
deviation from equilibrium. By this concept, we can now separate the dynamics of the climate 
system from the much slower reacting Earth thermal system by considering deviations from that 
virtual equilibrium expressed as (N(t) – N0(t)), by the following relation for disturbances of an 
equilibrium system: 

                                           
𝑑൫𝑁(𝑡) − 𝑁଴(𝑡)൯

𝑑𝑡
=

𝑑𝐹(𝑡)

𝑑𝑡
−

𝑁(𝑡) − 𝑁଴(𝑡)

𝜏
                                            (4) 

In the absence of external forcings (dF/dt = 0), N(t) relaxes back to N0(t) exponentially with a 
characteristic time τ according to (1b).  

The driving force to restore equilibrium (N(t) – N0(t)) is coupled to the surface temperature as in 
(2). So, the surface temperature TS that is applied here as characteristic for our climate, will rise 
according to (N(t) – N0(t)) divided by the climate heat-capacity CCL: 

                                                               
𝑑𝑇ௌ(𝑡)

𝑑𝑡
=

𝑁(𝑡) −  𝑁଴(𝑡)

𝐶஼௅
                                                           (5) 

Here we assume a constant CCL. If not, for example due to slow changes in the ocean top-layer, 
the term TS dCCL/dt that we then have missed to account for in (5), will automatically be incorpo-
rated in N0(t). By rearranging (4) and applying (3) with λ = CCL/τ, we can now rewrite (4) as: 
                                             

                                                                
𝑑𝑁

𝑑𝑡
=

𝑑𝑁଴

𝑑𝑡
+

𝑑𝐹

𝑑𝑡
−  𝜆

𝑑𝑇ௌ

𝑑𝑡
                                                         (6) 

 
If N0(t) itself changes over time, dN0/dt in (4) becomes indistinguishable from external forcings 
and should be included in the trend of total forcings dFTOT/dt = dF/dt + dN0/dt, thus creating a 
well-known relation in climate literature: 

                                                                      
𝑑𝑁

𝑑𝑡
=

𝑑𝐹்ை்

𝑑𝑡
− 𝜆

𝑑𝑇ௌ

𝑑𝑡
                                                           (7) 
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In (6) and (7), time dependencies have been left out as these relations have only practical use in 
analyzing climate data when considering longer term trends. The trend indication dX/dt for a 
parameter X as applied here, stands in fact for the change ∆X over a period ∆t >> τ. In climate 
literature, one often uses (7) in this ∆-format: 

                                                                     𝜆∆𝑇ௌ =  ∆𝐹்ை் − ∆𝑁                                                           (8) 

to determine the climate sensitivity ξ = 1/λ from the sum of all known forcings in ∆FTOT, the 
observed changes in imbalance ∆N and average temperature ∆T, over a certain period [15]. Cal-
culation with (8) might underestimate the value for λ as one easily “forgets” the positive contri-
bution ∆N0 in ∆FTOT. 

 
4. Available data used in the analysis 

4.1. Radiation data at TOA 

The most comprehensive radiation dataset is NASA’s CERES-EBAF v4.2 [9]. For our analysis, 
we use monthly SWIN, LWOUT, and N data from 2000 onward, processed as Centered Moving 
Annual Averages (CMAA) to eliminate seasonal/cyclical effects and highlight long-term trends. 
These trends as shown in Fig.3 in units of [W/m²/year], are for the 23 years full 12 months period 
2000/8 – 2023/7. 

Satellite-based absolute radiation measurements with an uncertainty of about 3–5 W/m² per chan-
nel, are unfit to directly detect a radiation imbalance of about 1 W/m², as reported by NASA in 
Fig.3. Actually, this imbalance is calibrated using the time derivative of Ocean Heat Content 
dOHC/dt, as explained in Section 4.2. While the absolute values may be uncertain, the anomalies 
and trends in the CERES data are considered as being reliable, thanks to regular in situ calibration 
of the satellite sensors. 

 
4.2. Ocean Heat Content (OHC) data  

The current radiation imbalance N(t) ≈ 0.85 W/m², is estimated from dOHC/dt shown in Fig.1 
[7]. Ocean Heat Content data are derived from vertical temperature measurements across the 
global oceans, collected by the ARGO float network [6]: a system of autonomous buoys that cycle 
to depths of ~2000 meters, measuring parameters like water temperature as they descend and 
ascend. 

Figure 3 (along with Fig.1) reveals that short-term fluctuations in the TOA radiation imbalance 
don’t always align with OHC trends. For example, the peak and dip around 2016 seen in OHC 
are not reflected in the TOA radiation imbalance data. However, those variations do appear in the 
incoming solar radiation SWIN, which directly influences ocean heating. This correlation supports 
the inclusion of the term dN0/dt in (6), representing the heat flux into deeper ocean layers. 

Figure 4 shows that heat continues to flow below 1900 meters, although modestly. A simple linear 
extrapolation suggests total OHC is about 1.10 times the measured OHC down to 1900 m. This 
correction factor (1.07) is applied to values derived from OHC, such as the calibrated absolute 
radiation imbalance in the CERES dataset, resulting in an updated estimate: N ≈ 0.94 W/m2.  
It does not apply to dN/dt ≈ 0.049 W/m2/year however, as it comes directly from NASA’s radia-
tion measurements at TOA. 

Figure 4 also shows that about 20% of the OHC change occurs in the top 100 meters of the ocean. 
This surface layer interacts strongly with the atmosphere and is therefore, not included in N0, the 
flux into the deeper ocean. The energy flux absorbed in this climate layer NCL = (N – N0) = 
CCLdTS/dt, as required by conservation of energy. From Fig.4 we estimate a value for NCL ≈ 
0.20*1.1*0.85 ≈ 0.19 W/m2, which implies N0 ≈ 0.75 W/m2 (averaged over 2004 – 2023).  
This value immediately shows, that N0 is not near the thermal flux to the bottom as a result of the 
much warmer top-layer. The maximum in the average temperature gradient towards the bottom 
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of the oceans of about 0.06 K/m as obtained from the ARGO-data, is found just under that top-
layer. With a thermal conductivity coefficient of salty sea water around 15 oC of 0.58 W/K/m, we 
can only explain 0.035 W/m2 i.e., a contribution of just 5% of the energy flux that heats the lower 
part of the oceans. So, most of that heat must come from absorbed solar radiation below the 
climate layer.  

 
4.3. Temperature trends 

To apply (6), we need a reliable estimate of the surface temperature trend. While many datasets 
exist, each with strengths and limitations [16], we focus in this paper on two key sources.  
The first is the HadCRUTv5 series from the UK Met Office [17], which shows a relatively high 
trend of 0.023 K/year over the 2000–2023 period. This dataset is based on a mix of ground stations 
and buoys. Its global average is obtained through interpolation and homogenization algorithms. 
However, because many land-based stations are located near urban areas and airports, these rec-
ords may be affected by local warming biases [19]. 

The second dataset is UAH-TLT from the Univ. of Alabama Earth System Science Center [18], 
based on satellite observations of microwave emissions from the Lower Troposphere (LT). It 
provides near-complete global coverage in a 1°x1° grid and shows a lower trend of 0.015 K/year 
for this period. 

Figure 4 shows that the sea surface temperature (SST) trend derived from ARGO data is approx-
imately 0.015 K/year, closely matching the 0.0135 K/year trend in the ocean-only portion of the 
UAH-TLT dataset. In contrast, the HadSSTv4 dataset [20] (assumingly the ocean component of 
HadCRUTv5) shows a higher SST trend of 0.019 K/year, indicating a significant discrepancy. 
We don’t know what causes this unexpected difference, but it is noteworthy since the ARGO 
floats are presumably part of the buoy network used in constructing the HadSSTv4 series. 

 
4.4. Greenhouse gas forcings 

Since the start of CERES measurements in 2000, the concentration of greenhouse gases (GHGs), 
especially CO2, has increased significantly. These concentrations have been reliably monitored 
since the early 1960s through daily observations, and the quality of these data is widely accepted. 

Figure 5 shows the total atmospheric concentration of all well-mixed Greenhouse gasses, such as 
for instance Methane (CH4), expressed as CO2-equivalent by applying relative GHG-strengths 
[21]. For simplicity, we refer to this further on as “CO2”. Because CO2-forcing is proportional to 
the logarithm of its concentration, a logarithmic scale is used on the vertical-axis. This reveals 
that CO2 concentrations have followed a near-perfect exponential trend since the mid-1970s. Con-
sequently, the forcing trend from GHGs (dFGHG/dt) has remained approximately constant for over 
4 decades, and it's unlikely to increase significantly. Net-zero initiatives in developed countries 
are slowing emission-growth, and global population, another major driver, is expected to stabilize 
later this century. 

The actual forcing-trend dFGHG/dt depends on the value for the forcing from doubling the CO2-
concentration F2xCO2 commonly expressed as: 

                                                           
𝑑𝐹 ுீ

𝑑𝑡 
=  𝐹ଶ௫஼ைమ

𝑑

𝑑𝑡
(ln[𝐶𝑂ଶ])/ ln(2)                                        (9) 

According to NASA’s AGGI database [21] dFGHG/dt ≈ 0.035 W/m²/year, indicating F2xCO2 = 3.7 
W/m². IPCC, in its AR6 report [8], uses a slightly higher RF2xCO2 = 3.9 + 0.5 W/m2, leading to a 
trend of 0.037 W/m²/year.  

However, applied forcing strengths depend on the definition of radiative forcing (RF). The IPCC 
defines its RF at the Top of the Troposphere (TOT) where thermal fluxes are still present, whereas 
in (4)-(7) the forcing trends used, refer to the Top of the Atmosphere (TOA). This matters a lot, 
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as IPCC’s definition excludes cooling effects of increasing GHGs in the Stratosphere, leading to 
systematically higher forcing values that may overstate surface warming considerably. 

For comparison, Van Wijngaarden & Happer [22] report F2xCO2 = 3.0 W/m² at TOA based on 
thorough radiative transfer calculations. For RF according to the IPCC definition at TOT, they 
calculate 5.5 W/m², illustrating the significant cooling from GHGs in the Stratosphere. Rentsch 
[23], reports an experimental value of 2.65 W/m², based on analyzing 17 years of satellite based 
spectroscopic data. 
These non-IPCC F2xCO2 values are calculated/established under clear-sky conditions. But, on av-
erage, two-thirds of the Earth is covered by clouds, strongly modulating GHG effects. Clouds 
reduce outgoing radiative fluxes: only ~1/3 originates from the surface and fully "feels" GHG 
forcing over the entire atmospheric column. The other ~2/3 comes from Top of Clouds (TOC) 
levels. TOC radiation is not only lower (due to lower TOC-temperatures) but also traverses a 
thinner atmospheric layer, reducing the greenhouse effect. Although CO2 is more effective above 
clouds where water vapor as a major overlapping absorber is nearly absent, the negative contri-
bution due to the large cooling effect of GHGs in the Stratosphere however, remains constant by 
absence of clouds at those heights. 

To estimate the net all-sky forcing, we can adjust clear-sky results using a "Venetian blinds" model 
[25] and MODTRAN simulations [24] applying TOC-temperature and -altitude from satellite data. 
This yields F2xCO2  ⪍ 2.0 W/m², about half the value used in IPCC AR6 [8].                                   
Although IPCC’s RF2xCO2 = 3.9 W/m2 is defined at TOT, it most probably represents a real all-sky 
value, as it comes from GCM simulations that include cloud effects. Comparing it to the 5.5 W/m2 
as calculated for the clear-sky TOT-situation [22], yields a ratio of 0.71. Applying this ratio to the 
clear-sky calculated 3.0 W/m2/K at TOA, indicates an all-sky F2xCO2 ≈ 2.1 W/m2. This aligns well 

Fig.5 Time evolution of the CO₂-equivalent concentration of all greenhouse gases (GHGs), based on data from [21]. 
The slope of this logarithmic plot indicates an almost constant radiative forcing trend over the past 40 years, in 
accordance with (9). With IPCC-AR6 “most likely” value of RF2xCO2 ≈ 3.9 W/m2[8], it implies a GHG forcing trend 
dFGHG/dt = 0.037 W/m2/year over the entire period. Using the recent "clear-sky" calculations by van Wijngaarden 
and Happer [22], the trend is ~0.028 W/m²/year. Accounting for the average ~2/3 cloud cover ("all-sky" conditions), 
the effective forcing trend is then significantly lowered to: dFGHG/dt ≈ 0.019 W/m2/year [25] (see the text for details). 
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with the 2.0 W/m² estimate from the Venetian blinds model [25], thus giving confidence in the 
all-sky forcing trend as derived via (9): dFGHG/dt ≈ 0.019 W/m²/year. 

  

5. Climate change in perspective 

5.1. Splitting the Total Forcing Trend 

In (7) all possible forcings trends at TOA including GHG-contributions dFGHG/dt, were combined 
into a single term dFTOT/dt. Since GHGs primarily act in the LW-channel, it is logical to split up 
the total forcing into: dFTOT/dt = dFNA/dt + dFGHG/dt. Here the subscript “NA” refers to “natural” 
and/or “non-anthropogenic” contributions. This includes forcings in the SW-channel as e.g. from 
aerosols, changes in the Earth’ albedo, either from changes in cloudiness or changes in the surface 
reflection, and changes in N0, the heat disappearing into the deep ocean.  
Although clouds affect both SW and LW radiation, their “net” radiative impact described as the 
Cloud Radiative Effect (CRE) can be reasonably well attributed to the SW-channel only. We can 
therefore split up the total forcing even a step further into dFTOT/dt = dN0/dt + dFSW/dt + dFGHG/dt. 
Later on, in Section 8, we will discuss how dFSW/dt can be fully linked to the large observed 
incoming solar trend dSWIN/dt as shown in Fig.3. For now, it is just the trend of an unknown 
forcing in the SW-channel. 

 
For the analysis we can rewrite (6) as: 

                                                     
𝑑𝑁
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                                           (10) 

 
We could have kept dN0/dt as a “natural” forcing trend, “invisibly” included into dFNA/dt. Its 
explicit treatment will prove important later. 

5.2. Testing the AGW-GHG-only hypothesis 

Suppose, we had no other forcings in our climate than those from GHGs as is basically assumed 
in IPCC’s AGW-hypothesis. That would imply dSWIN/dt = dN0/dt = 0 and (10) simplifies to: 

                                                                    
𝑑𝑁

𝑑𝑡
=

𝑑𝐹 ுீ

𝑑𝑡
−  𝜆

𝑑𝑇ௌ

𝑑𝑡
                                                         (11) 

Since at present, dTS/dt > 0 and λ = CCL/τ > 0 (by definition) we know for sure that according to 
(11): dN/dt < dFGHG/dt. This is also to be expected in a stable system where the “effect” of a 
disturbance will be smaller than its “cause”. The observed value for dN/dt ≈ +0.049 W/m2/year 
according to the CERES-data (Fig.3) however, even exceeds the highest estimates for dFGHG/dt ≈ 
0.019 – 0.037 W/m2/year (see Section 4.4 for the range). Even IPCC’s large value for the trend in 
GHG-forcing cannot explain the trend in the observed radiation imbalance, at all. 
It directly falsifies the AGW-hypothesis with GHGs as the sole drivers of Global Warming.  

 
5.3. The onset of Global Warming and the forcing dynamics at that time 

There is another challenge to the “GHG-only” scenario. At some point in the mid-1970s, the 
global cooling trend during the previous decennia reversed, and the modern warming period be-
gan. At that “turning” point in temperature at t = ζ, we must have had: dTS(ζ)/dt = 0 and d2TS(ζ)/dt2 
= 0. According to (5) dTS/dt = 0 implies N(ζ) = N0(ζ), and d2TS/dt2 = 0 requires: dN(ζ)/dt = 
dN0(ζ)/dt. 

With CCL > 0, equation (11) delivers the important observation that: dN(ζ)/dt = dFGHG(ζ)/dt. 

Figure 5 clearly shows a dFGHG/dt > 0 at that time. So, if the AGW-hypothesis is correct, warming 
began with a positive trend in the radiation imbalance dN(ζ) /dt > 0. As dFGHG/dt has been constant 
ever since, the rising temperature would have caused a declining imbalance (d2N/dt2 < 0) 
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eventually leading to dN/dt → 0 for t >> τ. This would imply, 50 years later, a climate in a steady 
state where the temperature would track the constant trend in GHG-forcing according to λdTS/dt 
= dFGHG/dt. As then dN/dt = 0, we would observe a constant offset in the radiation imbalance 
given by N = τ dFGHG/dt ≈ 0.08 – 0.16 W/m2, depending on the choices for F2xCO2 and τ. Accord-
ingly, dLWOUT/dt = 0 at a constant solar input as assumed in the AGW-hypothesis. 

This is nowhere near the observed imbalance ~ 0.94 W/m2, its large non-zero trend dN/dt ≈ 0.049 
W/m2/year and dLWOUT/dt ≈ 0.028 W/m2/year. It might explain the need for the IPCC to increase 
F2xCO2 as much as possible, as well as to lengthen τ by increasing the climate sensitivity. But this 
introduces additional inconsistencies. Combining the observed imbalance and the high IPCC forc-
ing trend, would indicate a relaxation time τ = N*(dFGHG/dt)-1 ≈ 25 years. If the imbalance began 
decreasing in the 1970s, it should even with this value have relaxed significantly by now to about 
20% of its initial value dN(ζ)/dt = dFGHG(ζ)/dt. Instead dN/dt as observed is still large, fully con-
tradicting this expectation. Moreover, the AGW-GHG-only hypothesis can never explain the large 
dLWOUT/dt as observed.  
The corresponding climate thermal capacity CCL would be N*(dTS/dt)-1 ≈ 40 - 60 Wyear/m2K, or 
equivalent to a climate layer of 300 - 450 meters thick. However, ARGO temperature-data show 
that seasonal variations don’t penetrate much deeper than about 100 meters [14]. Below 200 me-
ters, ocean temperatures are effectively decoupled from surface variations. That is consistent with 
the arguments in Section 2.4 about the parameters that determine the climate layer and the subse-
quent estimate for CCL of about 13 Wyear/m2K i.e., the heat capacity of a 100 m thick ocean layer. 

 
5.4. Climate change and the important role of Solar Forcing 

In Section 5.2 we derived the two key conditions that must have been met at the transition point 
between the global cooling- and global warming regimes: N(ζ) = N0(ζ), and dN(ζ)/dt = dN0(ζ)/dt. 
Substituting those into (10) that still contains all these components, gives a remarkable equality:  

                                                                        
𝑑𝐹ௌௐ

𝑑𝑡
+

𝑑𝐹 ுீ

𝑑𝑡
= 0                                                        (12) 

 
This implies that at t = ζ, the definitely positive forcing trend from GHGs was entirely offset by 
a negative trend in the forcing in the incoming solar channel i.e., dFSW(ζ)/dt ≈ – 0.019 W/m2/year, 
or even more negative depending on the choice for F2xCO2. However, as shown in Fig.3, it is un-
ambiguous that the current trend in incoming radiation dSWIN/dt >> 0, indicating that today’s 
dFSW/dt > 0. 

This leads us to conclude that the mid-1970s shift in climate change was not initiated by increas-
ing GHG concentrations, but rather by a change in the trend of SW-channel forcings. During the 
preceding cooling period, rising CO2 concentrations may have mitigated some of the cooling, but 
did not reverse it. Once the SW forcing trend turned positive, GHGs simply began to augment an 
already warming climate trend. 

 
5.5. The (near) “steady state” character of current climate change. 

Despite the ongoing changes in climate, the current state can be considered a “near” steady-state. 
The GHG forcing trend has been pretty constant for decades. Other forcings, primarily in the SW 
channel, are also likely to change slowly and can be approximated as having constant trends over 
decadal timescales. Similarly, despite yearly fluctuations, the surface temperature trend has re-
mained fairly stable since 2000. This stability implies by the same logic as in Section 5.2, that 
dTS/dt is (near) constant, and according to (5) that (N – N0) is (near) constant too. This allows for 
a large dN/dt as observed, but also indicates that dN0/dt ≈ dN/dt. From the OHC-data (Fig.4) we 
estimate that since t = ζ when dN0(ζ)/dt = dN(ζ)/dt, dN0/dt and dN/dt slowly developed to the 
present relation dN0/dt ≈ 0.8*dN/dt. Inserting this in (10) results in:  
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                                                      𝜆
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                                             (13) 

The 0.2*dN/dt cannot be neglected as it indicates the growing divergence in the order of about 10 
mW/m2/year. As a forcing, this is equivalent to a correction in the temperature trend of something 
like 3 – 10 mK/year, depending on the assumed climate sensitivity (see Section 6.1). 

This analysis strengthens the conclusion that the increase in both N(t) and N0(t) are not a direct 
consequence of greenhouse gas emissions, but rather of enhanced forcing in the SW-channel. The 
alleged accelerations in N(t) that triggered this study [1], must therefore be attributed to natural 
variations in the SW-channel, not GHGs. This also explains why we didn’t include dN0/dt into 
the sum of forcing trends dFTOT/dt in (10). If we had assumed a full steady state with d(N – N0)/dt 
= 0, we would have immediately noticed that (10) equals: 

                                                                    𝜆
𝑑𝑇ௌ

𝑑𝑡
=

𝑑𝐹ௌௐ

𝑑𝑡
+

𝑑𝐹 ுீ

𝑑𝑡
                                                      (14) 

 
A formula that we previously derived from a different perspective by perturbing the radiation 
fluxes in the SW- and LW-channels, going from one equilibrium to another. Begin and end state 
then both inherently satisfy the steady state condition d(N – N0)/dt = 0. It was shown that based 
on the Planck feedback definition 1/λPL = -∂TS/∂N, the feedback parameter in (14) must then be 
λ = –λPL [4]. 

Equation (14) determines the temperature trend in our climate due to slow changing forcings with 
a constant trend in either the SW- or LW-channel. These can be attributed to GHGs, aerosols or 
changes in cloudiness. In case the imbalance d(N – N0)/dt isn’t fully relaxed to zero, the small 
remaining imbalance will be absorbed in a slightly different estimate for dFSW/dt, keeping (14) 
still practically applicable. Using the relation λ = CCL/τ, we can rewrite (14) linking this sum of 
“external” forcings dFEXT/dt = dFSW/dt + dFGHG/dt to the OHC-trend for the climate layer:  

                                                        𝐶஼௅

𝑑𝑇ௌ

𝑑𝑡
= (𝑁 −  𝑁଴) =  𝑁஼௅ = 𝜏 

𝑑𝐹ா௑்

𝑑𝑡
                                  (15) 

 
The term τ dFEXT/dt is the offset in the radiation imbalance N due to all external forcings FEXT. 

 
6. A comparative analysis of the data against different views on climate change 

6.1. Input data-sets 

In this section, we apply the relations as derived in amongst others Section 5, to explore two 
contrasting perspectives on three fundamental parameters governing climate change: climate sen-
sitivity λ, temperature trend dTS/dt and trend in GHG-forcing dFGHG/dt. 

The first set, based upon IPCC’s views and further referred to as the “IPCC-set”, consists of: 

λ = λAGW = 1.1 W/m2/K, dTS/dt = 0.023 K/year and dFGHG/dt = 0.037 W/m2/year.  
 
For the Equilibrium Climate Sensitivity (ECS), IPCC reports 3 oC with a “likely” range 
of 2.5 – 4 oC. Their best estimate corresponds to λAGW = 1.3 W/m2/K using ECS = 
RF2xCO2/λAGW. For the simplicity of maintaining a clean 3x ratio with λPL, we adopted the 
midpoint of the likely range, in line with CMIP6 ESM as referred to by the IPCC [8]. 

The second set, further referred to as the “NAT-set” consists of quite different numbers with: 

λ = -λPL = 3.3 W/m2/K, dTS/dt = 0.015 K/year, and dFGHG/dt = 0.019 W/m2/year. 
 
Values originate from the analysis in [4], which initially also used IPCC’s GHG-forcing 
trend (dFGHG/dt = 0.037 W/m2/year). That choice led then to a large mismatch with the 
observed clear-sky dLWOUT/dt, prompting the all-sky recalculation for F2xCO2 [25]. 
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A fixed climate relaxation time τ = 4 years is assumed for both sets. The consequence of IPCC's 
large climate sensitivity 1/λAGW is that with this constant τ, the heat capacity of our climate CCL 

must become small. A shallow climate layer of about 30 meters is not very realistic, given the 
OHC-profile in Fig.4. To maintain consistency in the IPCC-set a longer relaxation time should 
be chosen (τ ≈ 12 years), or alternative combinations of CCL and τ such that CCL/τ = λAGW. As 
earlier discussed, a 12 years relaxation time doesn’t seem realistic. In discussing the calculated 
results in Section 6.1, we will address the possible impact of this choice where applicable. 

 
6.2. Data comparison and sensitivity sets as applied in Table 1 

For reference, Table 1 also includes a block of data derived from the observed OHC trends dis-
cussed in Section 5.2. Color-coding indicates which OHC-set parameters should be compared 
with the parameters calculated using (7) with dFTOT/dt = λdTS dt + dN/dt and (10), decomposing 
dFTOT/dt into dFGHG/dt, dFSW/dt and dN0/dt. Formulas used are indicated in the respective columns. 

Climate sensitivity ξ, is generally expressed in its inverse as feedback parameter λ. It is by far the 
most controversial parameter and key differentiator between the two primary data sets. Their dif-
ference is so significant that exact values for the other parameters might be less critical. To illus-
trate how results depend on those parameters, we added to each climate sensitivity, also the tem-
perature- and forcing trends of the other set. In this way we constructed 4 different sets. For the 
two primary sets, figures are shown in bold and for the two “hybrid combinations” in italics. 
Rows for these hybrids aren’t colored in the table. They are not considered viable climate-scenar-
ios but just added to make the sensitivity for certain parameter choices more visible.  

Table 1. Summary of the radiation balance analysis for 4 scenarios. The two most relevant scenarios are the standard 
IPCC scenario (IPCC-set) and an alternative scenario (NAT-set) as described in the text. The primary input parameters 
include the inverse of the climate sensitivity λ, the trend in Greenhouse gas forcing dFGHG/dt and the observed surface 
temperature trend dTS/dt. Using these parameters, various related components were calculated based on eq.(7) & (10), 
and where possible, compared with values derived from the Ocean Heat Content analysis in Sections 3 & 4. In the 
(colored) rows belonging to the two key scenarios, values are shown in bold; in the other scenarios, values are italicized. 
Identical color-coding is used to visually link corresponding values from the radiation balance and OHC analyses. 
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6.3. Explaining/discussing the output parameters in Tabel 1 
In this section, we systematically explain each column in Table 1 and relate them to the output 
derived from OHC data, as shown in Figures 1 and 4. For the radiation imbalance trend, we use 
the CERES-EBAF4.2 dataset, as numerically illustrated in Fig.3. 

 λdTS/dt expresses the climate response to the combined effect of all forcings. It is the warm-
ing of the climate layer through λdTS/dt = NCL/τ. In the NAT-set, using the Planck feedback 
parameter -λPL this relationship is well satisfied. But in the IPCC-set using λAGW, the expres-
sion does not match observations, unless the relaxation time τ is increased, or the heat content 
NCL decreased. These are contradictory adjustments: increasing τ implies a thicker, whereas 
lowering NCL requires a thinner climate layer. As λAGW = CCL/τ is fixed and CCL scales with 
the layer thickness only, these opposing requirements create an internal inconsistency that 
cannot be resolved. 

 dFTOT/dt represents the trend in the sum of all forcings, calculated via dFTOT/dt = λdTS/dt + 
dN/dt. Since both dN/dt and dTS/dt are derived from observations, differences in the calcu-
lated dFTOT/dt are primarily due to the choice of λ. As expected, the NAT-set yields a slightly 
higher value than the IPCC-set. However, this difference is modest, especially considering 
the 3x difference in climate sensitivity between the two sets. 

 N0 is the level of the virtual radiation balance as determined from the OHC-data and can also 
be calculated from the warming of the climate layer CCLdTS/dt = NCL. The IPCC-set once 
again fails to match this value with its unrealistically thin climate layer due to the chosen 
λAGW. By contrast, the NAT-set aligns well with the OHC observations, consistent with the 
earlier finding above that the λdTS/dt term is physically plausible. 

 dFNA/dt represents the portion of total forcing not attributable to GHGs. Under the AGW-
hypothesis, which recognizes only anthropogenic GHGs as forcing agents, the IPCC-set nec-
essarily implies: dFNA/dt = dN0/dt. This equality indeed holds in Table 1. However, this ap-
parent agreement is misleading. In the AGW framework dN0/dt = 0 by definition, because 
natural influences are excluded. By adjusting dFGHG/dt and λAGW, the energy balance equation 
dFGHG/dt = λdT/dt + dN/dt according to the AGW-hypothesis, can always be satisfied. Section 
5 already showed that such adjustments cannot overcome the fundamental requirement 
dN/dt < dFGHG/dt, which remains a major unresolved issue in the IPCC’s AGW-framework. 
 

 dN0/dt equals dN/dt in a true steady state. However, given the possibility of slowly varying 
natural forcings and a non-constant dTS/dt, the OHC data since 2004 suggest a constrained 
relationship: dN0/dt ≈ 0.80*dN/dt. In the NAT-set, this requires a small negative adjustment 
to the temperature trend of about –0.003 K/year. Because dFTOT/dt is fixed, that small negative 
contribution in (6) due to dN0/dt < dN/dt, is offset by a corresponding increase in dFSW/dt in 
the next column. Such a minor correction will not lead to essentially different conclusions. 
. 

 dFSW/dt is just the “residue” of dFNA/dt after subtracting dFGHG/dt and dN0/dt. In the AGW-
hypothesis of the IPCC, this is zero by definition, since natural or non-GHG forcings are 
excluded. In fact, using (11), this assumption even yields a slight cooling effect, despite the 
observed increase in incoming SW-radiation. This strongly undermines the IPCC-set’s cred-
ibility. The NAT-set, on the other hand, yields dFSW/dt ≈ 0.041 W/m2/year, which aligns with 
the observed albedo changes (see Section 8) and contributes meaningfully to global warming. 
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 dN/dt serves as a consistency check, computed from the sum of previous components via (7).  
As expected, all values check out. 

 
 ∆TGHG /∆T expresses the GHG-share in the observed global warming trend, calculated as 

(dFGHG/dt)/(λdTS/dt). It involves only the three parameters that most clearly distinguish the 
NAT-set from the IPCC-set: λ, dTS/dt and dFGHG/dt. For the NAT-set, this ratio yields roughly 
1/3rd anthropogenic and consequently, 2/3rd “natural” warming; consistent with the outcome 
of [4]. Even when using λPL in combination with IPCC’s high values for dFGHG/dt and dTS/dt, 
the result still attributes over 50% to warming from natural origin. Thus, the critical discrimi-
nant is the climate sensitivity 1/λ and not so much F2xCO2, the greenhouse gas strength.  
In contrast, the IPCC-set implies that 144% of the observed warming is of anthropogenic 
origin. Clearly, an impossible result unless a substantial, unrecognized cooling trend exists to 
offset this “overheating”. Not a very plausible concept with an increasing solar radiation as 
observed. This again highlights how tuning of parameters like λAGW and RF2xCO2, to match a 
specific relationship can lead to implausible outcomes elsewhere in the system. 

 

7. The consequences of the AGW-hypothesis under a “GHG-only” scenario  

The preceding analysis highlights how the IPCC's assumptions diverge significantly from ob-
served reality. While the IPCC model components may collectively reproduce the observed 
warming trend, they fail to individually align with key observational data, in particular the Ocean 
Heat Content.  

A useful measure here, is the ratio ∆TGHG /∆T which quantifies how much of the observed tem-
perature change is attributable to greenhouse gases. In the context of (11), representing the “GHG-
only” scenario central to the AGW hypothesis, this ratio should approach 1 if the IPCC narrative 
is correct. Demonstrating this equivalence is essential to validating IPCC’s framework. 

 
7.1. Varying the temperature trend dTS/dt  

We begin by examining the surface temperature trend dTS/dt, which in the IPCC framework is set 
at 0.0234 K/year, consistent with NASA's CERES-EBAF v4.2 dataset. Its previous version, v4.1, 
used a lower trend of approximately 0.0186 K/year. In v4.2, updated in January 2024, the trend 
was suddenly aligned (for unclear reasons) with the HadCRUTv5 dataset (see Section 4.3). 

While this higher trend is broadly consistent with UAH-TLT data over land [18], the global av-
erage from the same satellite series yields a lower 0.015 K/year, closely matching the sea surface 
temperature trend from ARGO floats (Fig. 1). If we were to adopt this lower value in the IPCC-
set, the ratio ∆TGHG /∆T would increase to approximately 2.2, since dTS/dt appears in the denom-
inator. This might explain the IPCC’s apparent preference for datasets with high warming trends. 
However, even with speculating about “accelerating” global warming, achieving ∆TGHG /∆T = 1 
would require a trend of 0.034 K/year, well above what is currently observed or justifiable.  

 
7.2. Adjusting climate sensitivity 1/λ 

An alternative route is to increase climate sensitivity in the IPCC-set. This actually worsens the 
mismatch. To bring ∆TGHG /∆T down to 1, we would need to decrease the climate sensitivity. This 
would imply a feedback parameter λ ≈ 1.6 W/m²/K, corresponding to a climate sensitivity roughly 
twice the inverse of the Planck feedback parameter rather than three times larger. However, this 
value is not supported by General Circulation Models (GCMs), on which the IPCC-set is 
founded. In fact, the latest CMIP6 models tend toward even higher climate sensitivities than pre-
vious generations. 
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7.3. Modifying the GHG-forcing strength F2xCO2 

The third option is to adjust the forcing strength F2xCO2. IPCC-AR6 sets this value at 3.9 W/m2 

[8]. To satisfy ∆TGHG /∆T = 1, it should be lowered to about 2.7 W/m2. Ignoring definitional nu-
ances (see the discussion in Section 4.4), this required value is even lower than what is derived 
from clear-sky radiative transfer calculations [22]. 

 
7.4. Altering the climate relaxation time τ 

Finally, we could consider modifying the relaxation time τ = 4 years, which influences several 
derived parameters (see Table 1). But this parameter does not affect the ∆TGHG /∆T ratio. As such, 
it offers no pathway for reconciling the “GHG-only” scenario with the observed data. 

 
8. The forcing trend dFSW/dt related to changes in incoming solar radiation SWIN 

8.1. Changes in cloudiness  

Section 6 showed that the NAT-set yields a residual forcing trend of approximately dFSW/dt ≈ 
0.041 W/m²/year. Regardless of the value of F2xCO2, a constant GHG forcing trend (dFGHG/dt) in 
the LW- channel should result in a constant LWOUT, as established in Section 5. Observations 
(Fig. 3) on the contrary, reveal not only a significant positive trend in dLWOUT/dt, but an even 
larger one in dSWIN/dt. 

The solar constant (S0) remains nearly constant on an annual basis, as confirmed by CERES data 
over the past 23 years. Seasonal variations, however, are non-negligible. For instance, over 18 
years, the average S0 during spring (MAM) increased by about 0.2 W/m² compared to autumn 
(SON). During spring in the Northern Hemisphere, high-latitude regions received ~0.4 W/m² 
more solar radiation than their Southern Hemisphere counterparts. These variations likely result 
from orbital changes and, although often dismissed, they represent potential forcings of a similar 
magnitude as those of GHGs. In particular, they will influence the redistribution of heat as they 
affect the Northern- to Southern Hemisphere balance. Nevertheless, the observed increase in 
SWIN is primarily due to albedo changes, especially from clouds. Variations in S0 are effectively 
embedded within the broader dSWIN/dt trend, but they do not explain its magnitude on their own. 

 
8.2. The Cloud Radiative Effect (CRE)  

Clouds influence both SW and LW radiation fluxes in the same direction, but to different extents. 
This impact is known as the Cloud Radiative Effect (CRE). CERES data provides global average 
values: SW-CRE ≈ 45.2 W/m2, and LW-CRE ≈ 25.6 W/m2 respectively. These are derived from 
20-years of radiation measurements under clear-sky (cs) and all-sky (as) conditions with 67% 
average cloud cover.  

To estimate the net cloud-induced forcing from the SWIN trend, we multiply dSWIN/dt by the net-
CRE factor, calculated as: (1 – LW-CRE/SW-CRE) ≈ 0.43 [9]. Changes in clouds and cloudiness 
are more than just cloud area-related effects as in this CRE. Changes in transparency, mostly for 
the SW-channel and changes in Top of Cloud (TOC) temperature for the LW-channel, contribute 
as well. While CERES offers some data on cloud area and TOC temperature, no robust method 
currently exists for incorporating these into an improved cloud forcing estimate. As such, 
dSWIN/dt remains our best proxy for quantifying the radiative effect of cloud changes.  

Clouds also affect dLWOUT/dt through their shielding effect, influencing both CO2 and water va-
por forcing. The water vapor content in "clear-sky" conditions within an all-sky atmosphere, dif-
fers from that of a hypothetical Earth in a clear-sky equilibrium. Since a truly clear-sky Earth 
doesn’t exist, interpreting the difference between clear-sky and all-sky LWOUT is inherently com-
plex [25].  
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8.3. All-sky versus Clear-sky SWIN data 
 
SWIN is affected by more than clouds alone. Figure 3 shows only all-sky (as) data, but the clear-
sky SWIN(cs) has also increased over the same period by about 0.036 W/m²/year (see Fig. 2 in 
[4]). This trend likely follows changes in surface reflectivity, including snow/ice melt (Surface 
Albedo feedback), changes in land-use (urbanization), and Global Greening (by increased CO2-
levels?). To isolate the cloud-related effect, we subtract the clear-sky (cs) trend from the all-sky 
(as) value dSWIN(as)/dt ≈ 0.077 W/m2/year. Since 67% of Earth’s surface is cloud-covered, only 
1/3rd of this clear-sky trend affects the all-sky value, leaving a cloud-related SWIN trend ~ 0.065 
W/m2/year. Multiplying this by the net-CRE factor gives a cloud-related SW forcing trend dFSW/dt 
of about 0.43*0.065 ≈ 0.028 W/m2/year. 

This net-CRE ratio applied here, as well as dSWIN/dt are global averages. But regional discrep-
ancies with SWIN >> LWOUT around the Tropics and SWIN << LWOUT in the Polar regions, do 
matter. Hence, both net-CRE and dSWIN/dt (as – cs) vary with latitude (see Fig. 6). The values in 
Fig. 6 are shown per unit area and must be cosine-weighted by latitude to yield a global average. 
The data suggests that the applied factor (0.43) may slightly underestimate the cloud forcing, so 
the derived 0.028 W/m²/year is likely conservative. 

Finally, we have to add the Surface Albedo part of 0.012 W/m2/year again that we first subtracted 
to calculate the net forcing from dSWIN(as)/dt, making dFSW/dt ≈ 0.040 W/m2/year.  

 

Fig.6 Eighteen-year difference between 5-years averages of the latitude-dependent “all sky minus clear sky” incom-
ing Solar radiation ∆SWIN (as – cs) and the corresponding net cloud-related forcing ∆FSW as calculated with the 
latitude dependent net-CRE ratio as described in Section 8. The respective vertical axes are scaled to match globally 
averaged net-CRE, demonstrating that this approach provides a good estimate of the global mean cloud-related 
forcing ∆FSW. The figure highlights that this forcing is predominantly a Northern Hemisphere phenomenon, with a 
peak in ∆FSW of approximately 1.5 W/m2. For comparison: the change in GHG forcing ∆FGHG over the same period 
was as indicated, about 0.34W/m2 (or 0.70 W/m2 using IPCC’s RF2xCO2 forcing value).  
Data source: https://ceres.larc.nasa.gov/data [9]. 
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8.4. Comparing dFSW/dt as derived from SWIN versus the calculated value from Tabel 1 

The empirically derived dFSW/dt ≈ 0.040 W/m²/year aligns closely with the 0.041 W/m²/year ob-
tained through the calculations used to construct Table 1. Considering the various assumptions 
and uncertainties involved in this derivation, this agreement is noteworthy and unlikely to be 
coincidental. Combining this with dFGHG/dt = 0.019 W/m²/year and λ = 3.3 W/m²/K, we calculate 
with (13) a temperature trend dTS/dt ≈ 0.015 K/year. This is consistent with both the UAH-TLT 
satellite data and the SST trend, affirming the NAT-set as a reasonable model framework. 

 
Figure 6 also illustrates that changes in cloudiness are more pronounced on the Northern Hemi-
sphere, especially at mid-latitudes and over Western Europe. For example, the Dutch KNMI 
weather-station at Cabauw (51.87°N, 4.93oE), where all ground-level radiation components are 
monitored every 10 minutes, recorded an increase in solar radiation of almost +0.5 W/m²/year 
since 2000 [26]. Applying the 0.43 net-CRE factor (conservative for this latitude), we estimate a 
local forcing trend dFSW/dt ≈ 0.2 W/m²/year. This is an order of magnitude larger than the GHG-
forcing (0.019–0.037 W/m²/year). Even with the IPCC values, GHGs can just account for about 
16% of the warming at this station. The average temperature trend for this rural station located in 
a polder largely covered by grassland, is with ~ +0.043 K/year almost 3x the global average.  
This, nor the other trends mentioned above can be adequately explained by the IPCC's GHG-only 
model. As Section 9 will show, it also fails to explain the observed trend in SWIN at TOA. 

 
9. Cloud-feedback as a possible origin of the forcing trend dFSW/dt 

The IPCC places strong emphasis on the role of climate feedbacks in amplifying the warming 
effect of greenhouse gases (GHGs) [8]. These feedbacks are considered secondary consequences 
of Anthropogenic Global Warming, driven by the initial temperature increase from GHGs. 
Among them, Water-Vapor feedback is the most significant. A warmer atmosphere holds more 
water vapor (approximately +7%/K) and since water vapor is a potent GHG, even a small warm-
ing from CO2 can amplify itself through enhanced evaporation. 

Other feedbacks recognized by the IPCC include Lapse Rate, Surface Albedo, and Cloud feed-
backs [8], all of which are inherently tied to the presence and behavior of water in its various 
phases. Therefore, these feedbacks are natural responses to temperature changes, regardless of 
the original cause of warming, be it GHGs, incoming solar variability, or internal effects. They 
are not additive components to natural climate sensitivity, as treated by the IPCC, but rather inte-
gral parts of it [4]. 

In the energy balance framework discussed in Fig. 2, feedbacks manifest through a temperature 
sensitive R, thus influencing how quickly the system can return to equilibrium after a perturbation. 
Hence, their influence on temperature. However, through λ = CCL/τ, they are already incorporated 
in all applied equations in this paper through the value of τ.  

This conceptual distinction underlies the key difference in climate sensitivity assumptions be-
tween the NAT-set (natural feedback dominated, (near) Planck response) and the AGW/IPCC-set 
(strong positive feedbacks), as elaborated in [4]. 

 
9.1. Estimating the GHG-induced feedback contributions 

In Section 8, we included the Surface Albedo feedback, changes in reflected solar radiation from 
the surface due to, for example, snowmelt or changes in vegetation. We didn’t distinguish whether 
these were caused by warming or other factors (e.g., land use change or global greening).  
In the IPCC framework, however, all feedbacks, including Albedo and Cloud feedbacks, are pri-
marily presumed to be secondary effects of GHG-driven warming. This interpretation leads to the 
claim that the observed increase in incoming solar radiation (SWIN) is not natural but is in itself a 
feedback effect from GHGs, caused by temperature-induced reductions in snow- and cloud cover. 
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To test this idea, we can estimate the contribution of temperature-driven feedbacks, specifically 
from Surface Albedo and Cloud changes, to the observed trend in dFSW/dt as calculated from 
dSWIN/dt. 
 

9.1.1. Surface Albedo feedback 

From Table 1, the GHG-induced component of warming accounts for about 1/3rd of the total. 
Applying this to the Albedo feedback trend included in dSWIN/dt (~ 0.012 W/m²/year as shown 
in Section 8), the GHG-induced portion is only ~ 0.004 W/m²/year. With a temperature trend of 
0.015 K/year, it implies a Surface Albedo feedback parameter λSA ≈ 0.3 W/m2/K, slightly lower 
than the IPCC’s AR6 estimate. But even using their value λSA = 0.35 ± 0.25 W/m2/K, gives a 
maximum contribution of only 0.005 W/m²/year to dFSW/dt. That is still far too small to account 
for the observed trend. 

 
9.1.2. Cloud feedback 

For estimating the GHG-induced Cloud feedback, we have no other option than to use the IPCC’s 
AR6 estimate for λCF = 0.4 + 0.5 W/m2/K as derived from GCMs [8]. The sum of all temperature 
driven feedbacks is about 2.2 W/m2/K of which 2/3rd has to be attributed to Water-Vapor feedback 
[4,8]. So, the high side of the range is very unlikely. On the low side of the range, negative values 
for λCF will not help SWIN to increase, so we limit ourselves here to the center value. With the 
observed surface temperature trend dTS/dt = 0.015 K/year, in line with SST trends over the pre-
dominantly oceanic cloud-forming regions, we calculate a Cloud feedback contribution of only 
0.006 W/m²/year. With only one-third of the warming attributed to GHGs, the anthropogenic 
share of this feedback is roughly 0.002 W/m²/year. 

 
9.2. Combined feedback impact and implications 

Combining these estimates for the GHG-induced Surface Albedo and Cloud feedbacks yield a 
contribution of only ~15% of the total dFSW/dt ≈ 0.040 W/m²/year as derived in Section 8. 

Specifically, Cloud feedback alone accounts for just 5% of the total, meaning it is insufficient to 
explain the observed increase in SWIN. Furthermore, it is notable that the Cloud feedback contri-
bution is not even larger than that from the Surface Albedo, despite clouds playing a dominant 
role in radiative forcing and deliver about 50% of the normal Greenhouse Effect [25]. This might 
be due to the fact that not all Surface Albedo changes are temperature-driven. Change of land-use 
and Global Greening can occur independently of GHG-induced warming, yet still influence cli-
mate/temperatures. 

In conclusion, the GHG-related Surface Albedo and Cloud feedbacks are far too weak to explain 
the observed trend in SWIN. The majority of the trend must therefore be attributed to natural causes 
unrelated to GHG-induced warming. The resulting forcing trend dFSW/dt ≈ 0.040 W/m2/year as 
calculated in Section 8 using the observed dSWIN/dt, matches well with the independently derived 
value of 0.041 W/m²/year from Section 7 and Table 1.  

To estimate the purely natural contribution to global warming, we subtract the GHG-attributed 
share (about 0.006 W/m²/year) from the total dFSW/dt, leaving a “net” natural forcing trend in the 
SW-channel of ≈ 0.035 W/m²/year. Given the GHG forcing trend dFGHG/dt ≈ 0.019 W/m2/year, 
this leads to the conclusion that approximately 2/3rd of the observed global warming is of natural 
origin, and 1/3rd is due to anthropogenic cause such as the increase of e.g. CO2. 

An alternative CERES-based analysis in [4] produced similarly, a 50/50 split, albeit assuming 
higher GHG-forcing trends. Even when using the IPCC GHG forcing values within the NAT-set 
(the “white row” in Table 1), natural contributions still dominate. 

These findings indicate that the relative role of GHGs in observed warming depends more on the 
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assumed climate sensitivity than on the absolute magnitude of GHG forcing. Of course, that is 
partly due to the observations that GHGs are not at all playing the dominant role in global warm-
ing, which IPCC attributes to them. As emphasized in [4], it is then the value of climate sensitivity 
and not necessarily the forcing strength that most strongly determines warming outcomes. 

This analysis reinforces a fundamental point: climate feedbacks are not external modifiers of cli-
mate sensitivity; rather, they are inherent to the system. Their combined effect is already embed-
ded in the climate response function. The IPCC’s treatment of feedbacks as additive components 
used to “explain” high sensitivities in GCMs is conceptually flawed. Physically, Earth’s climate 
is governed by the mass balance of water in all its phases: ice, snow, liquid, vapor, and clouds. 
The dynamics between these phases are temperature-sensitive, and they constitute the feedback 
processes. Feedbacks aren’t just add-ons to the climate system, they are our climate. 

 
10. Ocean Heat Content increase 

In the introduction, the "heat in the pipeline" concept: the idea that heat stored in the deep, cold 
ocean layers could later resurface to significantly influence surface temperatures, was challenged. 
Without a substantial decrease in surface temperatures to reverse ocean stratification, this seems 
highly unlikely. Large and rapid temperature fluctuations during the pre-industrial era with rates 
up to plus, but also minus 0.05 K/year over several decennia as recorded in the Central England 
Temperature (CET) series [27], more than three times the rate observed today, further undermine 
the notion of a slow-release heat mechanism dominating surface temperature trends. 

Ocean Heat Content must be related to solar energy. It is the prime source of energy heating the 
Earth thermal system. Almost 1 W/m2 of that 240 W/m2 solar flux that is in average entering the 
system, is presently remaining in the oceans. This is an order of magnitude larger than the esti-
mated 0.1 W/m2 of geothermal heat upwelling from the Earth inner core [11]. Extra greenhouse 
gasses don’t add energy to the system, but just obstruct cooling. As shown in Section 5.3, this 
accounts for a radiation imbalance offset τ dFGHG/dt, or equivalent to a contribution to dOHC/dt 
of only about 0.08 W/m2. 

As redistribution of “heat in the pipeline” will not change the total OHC, roughly ¾ of the ob-
served positive trend in OHC must at least be attributed to rising solar input. The oceans act in 
this way as our climate system’s thermal buffer. It will mitigate warming during periods of in-
creased solar input and dampen cooling when solar input declines, underscoring its critical role 
in Earth's climate stability. 

Levitus et al. (2012) [28] combined OHC estimates back to 1955 to the data of the ARGO pro-
gram as shown in Fig.7. Despite the high uncertainties in pre-ARGO ocean temperature measure-
ments, it looks as if we had periods with a very strong positive +0.8 W/m2 (1970-1980) as well 
as a very strong negative –0.7 W/m2 radiation imbalance (1963-1970). But also, a period with an 
almost perfect radiation balance (1980-1990). Nevertheless, when averaged over the entire period 
from 1955 to 2010, the OHC trend to 2000 m depth corresponds to a positive net radiation imbal-
ance of approximately +0.4 W/m2. We also must have had a relatively high positive radiation 
imbalance before the turning point at t = ζ, going from global cooling into a global warming 
regime. It all indicates to a positive radiation imbalance for most of the time, even before GHGs 
allegedly started to change our climate. 

Reconstructed data in the AGGI database [21], show that GHG concentrations were already rising 
exponentially after WWII, implying a steady dFGHG/dt since at least 1955. Therefore, the almost 
constant forcing rate from GHGs cannot have triggered these abrupt radiation imbalance shifts as 
visible in Fig.7. So, the sudden variations around the early 1960s, 1970, 1980 and 1990, must 
have been triggered by natural events. Such rapid changes in OHC, as for instance around 1970, 
where N changes from a negative into a positive balance by +1.5 W/m2 in about 4 years of time, 
also indicates a rather short climate relaxation time τ. Again, this contradicts IPCC’s high climate 
sensitivity value.   
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The strong downwards slope in the OHC before 1970 confirms the observation in Section 5.4 and 
expressed by (12) that around the turning point t = ζ, the forcing trend in the SW-channel had to 
be negative. Moreover, the rather slowly increasing 700-2000m OHC data in Fig.7 indicate that 
most of the fluctuations have occurred relatively close to the surface. Heat from e.g. seafloor 
volcanism as “warming from below”, is expected to show up more pronounced in this 700-2000m 
OHC-profile. Although we cannot rule out geothermal influences [29], this observation makes 
them less likely.  

As the OHC seems to be primarily coupled to SWIN, the most plausible cause would involve rapid 
changes in SW-forcing. A sudden drop in cloud-cover might explain such changes, but no con-
vincing observations could be found for the 1960-1980 period. Alternatively, changes in the lati-
tudinal distribution of cloud-cover as illustrated by Fig.6, can result in similar radiative impacts 
due to the stark contrast between a positive radiation imbalance in the Tropics and a very negative 
imbalance at the Poles. The ENSO-oscillations in the Pacific Ocean around the equator are a 
typical example for such influences, as also illustrated in Fig.3 [10]. Shifts in cloud distribution 
are linked to changes in wind patterns and/or ocean currents, reinforcing the idea as indicated in 
Section 1, that even minor disruptions in horizontal heat transport can trigger major shifts in our 
climate’s equilibrium [29, 30]. Sharp shifts in Earth’s radiation imbalance like the one around 
1970 as inferred from Fig.7, may even represent one of those alleged tipping points. But in this 
case, certainly not one triggered by GHGs. Ironically, some climate scientists in the early 1970s 
predicted an impending (Little) Ice Age [31].  

While additional data (e.g. radiation measurements) are needed to draw firm conclusions, the 
available evidence already challenges the prevailing GHG-centric narrative again. GHG 

 “Time series for the World Ocean of ocean heat content (1022 J) for the 0–2000 m (red) and 700–2000 m 
(black) layers based on running pentadal (five-year) analyses. Reference period is 1955–2006. Each pen-
tadal estimate is plotted at the midpoint of the 5-year period. The vertical bars represent +/−2.*S.E. about 
the pentadal estimate for the 0–2000 m estimates and the grey-shaded area represent +/−2.*S.E.” 

Fig. 7. Graph and part of its caption reproduced from Levitus et al. [28], showing estimates of Ocean Heat Content 
(OHC) since 1955, including the associated 2σ uncertainty range. At NOAA’s Climate.gov, the 0–700 m OHC data 
are cited as evidence of greenhouse gas (GHG) effects, using the statement: “More than 90 percent of the excess 
heat trapped in the Earth system due to human-caused global warming, has been absorbed by the oceans”. 
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emissions, with their near constant forcing rate, cannot account for the timing nor the magnitude 
of historical OHC trends, as NOAA explicitly suggests [32]. Similarly, claims by KNMI that 
“accelerations” in radiation imbalance trends are GHG-driven [1], are not supported by data. And 
finally, the alarms around “heat in the pipeline” must be exaggerated if not totally misplaced. 
Given the similarities in radiation imbalance and GHG forcing rates around 1970 with today’s 
situation, we must conclude that this assumed heat manifested itself at that time apparently as 
“cooling in the pipeline”.  

However, warnings for continued warming even if we immediately stop now with emitting GHGs 
are nevertheless, absolutely justified. Only, it isn’t warming then from that heat in the pipeline 
due historical emissions that will boost our temperatures. Warming will continue to go on as long 
as natural forcings will be acting. These are already today’s dominant drivers behind global tem-
perature trends. And unfortunately, they will not be affected by the illusion of stopping global 
warming as created by implementing Net-Zero policies. 

 
11. Summary and conclusions  

This analysis demonstrates that a global warming scenario driven solely by greenhouse gases 
(GHGs) is inconsistent with more than 20 years of observations from space and of Ocean Heat 
Content. The standard anthropogenic global warming (AGW) hypothesis, which attributes all 
observed warming to rising GHG concentrations, particularly CO2, cannot explain the observed 
trends. Instead, natural factors, especially long-term increase in incoming solar radiation, appear 
to play a significant and likely dominant role in global warming since the mid-1970s. 

The observed increase in incoming solar radiation cannot be accounted for by the possible an-
thropogenic side effects of Albedo- and Cloud-feedback. All evidence points to the conclusion 
that this “natural” forcing with a trend of about 0.035 W/m2/year is equal to, or even exceeds the 
greenhouse gas related forcing of about 0.019 W/m2/year. Based on these values, only 1/3rd of the 
observed temperature trend can be of anthropogenic origin. The remaining 2/3rd must stem from 
natural changes in our climate system, or more broadly, in our entire Earth’ thermal system. 

Moreover, the observed increase in Earth's radiation imbalance appears to be largely unrelated to 
GHGs. Instead, it correlates strongly with natural processes driving increased incoming solar ra-
diation. Claims of “acceleration” in the radiation imbalance due to GHG emissions are not sup-
ported by the trend in accurately measured GHG concentrations. If any acceleration in global 
warming is occurring, it is almost certainly driven by the increasing flux of solar energy—an 
inherently natural phenomenon not induced by greenhouse gases. 

In summary, this analysis challenges the notion that GHGs are the primary drivers of recent cli-
mate change. It underscores the importance of accounting for natural variability, especially in 
solar input, when interpreting warming trends and evaluating climate models. 
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Abstract 

The increased atmospheric CO₂ level is widely recognized as a primary driver of global greening 
(a 30% increase in GPP since 1900). It raises the question whether such an increased CO₂ level is 
also a necessary condition for a large GPP. This paper evaluates whether CO₂ levels during 
historical periods of similar or more greenness as today, are consistent with the widely held view 
that CO₂ levels remained below 300 ppm over the past 800,000 years, as indicated by Antarctic 
ice core records. Employing Mitscherlich’s Law, the research models the global GPP response to 
increasing CO₂, based on the mean value of eight different long-term GPP datasets. It illustrates 
a diminishing return of vegetation associated with rising CO₂, as additional factors such as 
nutrient and water availability impose constraints on the fertilization effect. Due to this 
diminishing return the average residence time of CO₂ in the atmosphere increases significantly 
with higher GPP values. High CO₂ levels, similar to today's, were therefore necessary for 
comparable GPP during green periods like 10,000 years ago. A CO₂ concentration of 280 ppm 
would only be possible if nature’s response to CO₂ were fundamentally different from what we 
observe today, with other constraining factors exceptionally more favorable. Natural fluctuations 
of the atmospheric CO₂ concentration can be well explained, based on the strong temperature 
dependence of the degeneration of carbon compounds that are stored in large quantities in the soil 
and the oceans.  
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1. Introduction 

Global greening refers to the observed increase in the amount of green vegetation, such as plants 
and trees, across the planet. The terrestrial Gross Primary Production (GPP) has gone up by more 
than 30% since 1900. Multiple studies have identified the growing atmospheric CO₂ concentration 
as the dominant driver of this greening (Haverd et al., 2020; Lai et al., 2024). The present level 
of greenness in terms of GPP is, however, not exceptional. In the history of the Earth there have 
been many fluctuations in the amount of vegetation. As an example, we use the situation 10,000 
years ago, when there was 50% more forest area on the planet than there is today (Ritchie, 2021). 
In this study we investigate the relationship between the (historical) levels of greenness in terms 
of GPP and the atmospheric CO₂ concentration. The general accepted belief, based on ice core 
records of Antarctica, is that CO₂ levels were much lower than today, typically around 280 ppm 
and for a period of 800,000 years less than 300 ppm (Lüthi et al., 2008; Bereiter et al., 2015). We 
want to determine how likely it is that these low concentrations match with a level of greenness 
that is equal or higher than the present level, or if a higher atmospheric concentration is needed 
to explain historical GPP levels. 
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For carbon dioxide the atmosphere can be regarded as a well-mixed container with natural up and 
down fluxes to and from land and oceans. At any moment t in time the residence time τ(t) is 
defined as the average time CO₂ remains in the atmosphere in years and is equal to the total 
atmospheric CO₂ mass c(t) divided by the global down flux dG(t) per year, which leads to: 

 𝑐(𝑡) = 𝑑ୋ(𝑡) ∙  𝜏(𝑡) (1) 

The recent global greening is reflected in the increase of the carbon fluxes to and from the 
atmosphere, and a longer residence time, since 1750. See Table 1. The down flux has increased 
by 29% and the residence time by 16%. Together they explain the increase with 50% of the CO₂ 
level (Schrijver, 2024). 

Table 1: Changes in the carbon cycle since pre-industrial period (IPCC, 2021; Friedlingstein et al., 2023) 

  1750 2022 % 

CO₂ mass atmosphere PgC 591 885 50% 

Natural emissions PgCyr-1 166 210 27% 

Anthropogenic emissions PgC 0 11  

Total emissions (up flux) PgCyr-1 166 221 33% 

Total absorption (down flux) PgCyr-1 167 216 29% 

Residence time yr 3.5 4.1 16% 
 

To draw conclusions on historical CO₂ concentrations, we must understand the impact of the 
global GPP to the down flux and to the residence time. The 2022 CO₂ level of 885 PgC is the 
result of a down flux of 216 PgCyr-1, multiplied by the residence time of 4.1 years. If during 
periods of similar greenness in the past millennia the CO₂ level was only 590 PgC, it would imply 
a lower down flux and/or a shorter residence time at that time. To consider ice core records 
accurate, it is necessary to determine if a smaller down flux and/or a shorter residence time, 
combined with a high level of greenness, is reasonable. 

2. GPP changes 

The ‘greening of the Earth’ refers to the observed increase in the amount of green vegetation 
across large parts of the planet over the past decades. Long-term satellite records revealed a 
significant global greening of vegetated areas since the 1980s. In this contribution we refer to 
greening in terms of the increase in gross primary production (GPP), the rate of carbon fixation 
by photosynthesis. Global terrestrial GPP has gone up by more than 30% since 1900 (Haverd et 
al., 2020; Lai et al., 2024). A similar effect has been observed in the oceans, where increased 
levels of dissolved CO₂ lead to more photosynthesis by phytoplankton (Riebesell et al., 2007) 

The greening of the Earth is mostly the result of the increased CO₂ concentration, but estimates 
show large variations, from 44% (Chen et al., 2022) to 86% (Haverd et al., 2020). The most 
widely cited source estimates the CO₂ fertilization effect at approximately 70% (Zhu et al., 2016). 
Other factors include nitrogen deposition (9%), climate warming (8%) and land cover change 
(4%)1. As atmospheric CO₂ concentrations have risen (now over 425 ppm, compared to ~280 ppm 
pre-industrially), plants can photosynthesize more effectively. CO₂ is a primary raw material for 

 
1 CO₂ is strictly speaking not a fertilizer as it is the primary raw material for photosynthesis. In the scientific 

literature there is, however, an abundant use of the term ‘CO₂ fertilization effect’, that can be defined as 
the enhancement of photosynthesis and subsequent growth in many plants due to increasing levels of 
atmospheric carbon dioxide. 



 Frans J. Schrijver: Historical CO₂ levels in periods of global greening 

 

Science of Climate Change  https://scienceofclimatechange.org 

 109 

 

photosynthesis, so higher availability allows plants to grow faster and often use water more 
efficiently (by reducing stomatal conductance).  

The major part of all CO₂ that directly or indirectly flows from the atmosphere to land and sea 
each year, is the result of photosynthesis. The photosynthesis of plants on land is responsible for 
almost all the terrestrial down flux, 120 - 130 PgCyr-1. The photosynthesis of phytoplankton in 
the oceans is comparable with the GPP on land: 100 - 150 PgC yr-1 (Huang et al., 2021). This is 
larger than the CO₂ down flux to the oceans (80 - 90 PgC yr-1), as it represents biological fixation 
of dissolved CO2 within the ocean, which indirectly defines the exchange with the atmosphere. It 
is, however, clear that also in the oceans photosynthesis is an important component in the oceanic 
down flux.  

Many studies though have found that the fertilization effect is weakening and greening is slowing 
down (Reich and Hobbie, 2013; Allen Jr., 2019; Terrer et al., 2019; Wang et al., 2020; Winkler 
et al., 2021). The ß-factor is often used to characterize the plant response to increasing CO₂ 
concentration, where ß is defined as the relative increase in gross primary production (p) in 
response to an increase in atmospheric CO2 concentration (c).  

 
𝛽 =

𝑑𝑝

𝑑𝑐
 (2) 

The global median ß during 1982 to 2015 was 16.1 ± 11.5% per 100 ppm, so 16% increase in 
photosynthesis per 100 ppm CO₂. Using multiple long-term satellite- and ground-based datasets, 
it was shown that global carbon fertilization effect declined across most terrestrial regions of the 
globe. During 1982 to 2015 ß decreased at a rate of −0.92 ± 0.12% 100 ppm−1yr−1 (Wang et al., 
2020). 

A declining ß means that the fertilization effect is weakening and greening is slowed down. The 
explanation is that further growth of the vegetation is constrained by other factors. An important 
factor is nutrient limitation. Plant growth is limited by the nutrient that is most scarce, not by the 
abundance of others. Even if CO₂ is super-abundant, plants cannot grow indefinitely if they don't 
have enough other essential nutrients like nitrogen or phosphorus. Also, the availability of 
sufficient water can be a limiting factor that slows down the growth rate. Another element is plant 
acclimation. Plants can physiologically adjust to sustained high CO₂, if they cannot use all the 
extra carbon for growth due to nutrient or other limitations.  

We can apply Mitscherlich's Law, also known as the Law of Diminishing Returns in Agriculture, 
to describe the relationship between the application of a single variable input (e.g., fertilizer, 
water) to a fixed area of land and the resulting crop yield. The law states that the increase in crop 
yield due to an additional unit of input diminishes as more of that input is applied, assuming other 
factors (e.g., soil quality, sunlight) remain constant. The application of Mitscherlich’s Law has 
been demonstrated individual crop growth responses to rising atmospheric carbon dioxide, e.g. 
(Allen Jr., 2019).  

3. Modelling Diminishing Returns 

Here we have investigated the application of Mitscherlich’s Law to describe not just individual 
crop yields, but the global GPP as a whole in response to increasing CO₂ levels. It posits that the 
response (e.g., crop yield or vegetation growth) to an input (in this case the actual CO₂ 
concentration) increases rapidly at low input levels but approaches a maximum as the input 
continues to rise. For Earth's greening it can be written as follows. 

 
𝛽 =  

𝑑𝑝

𝑑𝑐
= 𝐵 ∙ (𝐴 − 𝑝) (3) 

This equation says that the rate of GPP increase related to the CO₂ concentration is proportional 
to the gap between the maximum GPP and the current GPP, where: 
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c is the input level, in this case the actual CO₂ concentration, 
p is the yield at input level c, in this case the gross primary production (GPP), 
A is the attainable yield, in this case the maximum GPP (with other factors constant), 
B is a constant related to the efficiency of the input (CO₂), 
ß or dp/dc represents the rate at which yield (GPP) increases with respect to input (CO₂). 

To investigate whether Mitscherlich can be applied to describe the greening of the Earth based on 
the CO₂ concentration, we apply the results of a study by (Wang et al., 2024). This study 
investigated the global trends in terrestrial Gross Primary Productivity (GPP) and their driving 
factors over the past four decades, utilizing eight different GPP datasets, including BEPS GPP, 
CCDAS GPP, EC-LUE GPP, GIMMS GPP, LRF GPP, GPPNIRv, P-model GPP, and TRENDY 
GPP. The findings indicate a notable decrease in global GPP trends, from 0.43 PgCyr-2 in 1982–
1999 to 0.17 PgCyr-2 in 2000–2016, a phenomenon observed across more than 68% of the 
terrestrial surface. This decline due to a reduced CO₂ fertilization effect was particularly evident 
in satellite-derived GPP data. 

After solving the differential equation Mitscherlich’s Law for the greening of the Earth can be 
written as follows (with pT as the terrestrial GPP). 

 𝑝୘ = 𝐴(1 − exp(−𝐵(𝑐 − 𝐶଴)) (4) 

Photosynthesis typically stops functioning at CO₂ concentrations below 150 ppm. So, this level 
can be regarded as a starting point in the equation, which is reflected in the value 318.6 PgC for 
C0 (which is equal to 150 ppm). By matching the time series of the mean values of the 8 models 
with the actual concentration level in each year (Lan and Keeling, 2025), we were able to compare 
the (c, p)-values with Equation 4, as presented in Figure 1. Each blue dot represents a GPP value 
for the associated CO₂ value. With the use of the Non-linear Least Squares method we were able 
to find values for A and B that give the best fit for the given data. The red line shows the best fit 
line with an R2 of 0.85.  

 

Figure 1: The mean terrestrial GPP values of  8 long term models as a function of the actual CO₂ 
concentration in the atmosphere (blue dots). The red line represents the best fit line according to 
Mitscherlich’s Law as given by equation 4.  

 

The available GPP data only relate to terrestrial absorptions, while we are interested in the total 
global GPP. We have, however, no reliable dataset for oceanic GPP changes in the past decades. 
Most studies on the fertilization effect are focused on terrestrial vegetation, supported by satellite 
observations. Global oceanic GPP trends are less straightforward than terrestrial trends and 
exhibit considerable regional and seasonal variability (Evans, Hales and Strutton, 2011). 
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Photosynthesis and respiration occur in water using dissolved CO₂, making it hard to distinguish 
biological processes from physio-chemical ones that interact with the atmosphere. Biological 
processes determine the dissolved CO₂ concentration and aquatic partial pressure (pCO₂), while 
the atmospheric exchange is driven by the difference in pCO₂ between the surface water and the 
atmosphere.  

According to the 6th Assessment Report from the IPCC not just terrestrial, but also oceanic 
emissions have increased since pre-industrial times. Emissions from the oceans have increased 
from 54 PgCyr-1 in 1750 (IPCC, 2021) up to 80 PgCyr-1 (Friedlingstein et al., 2023). The 
temperature dependence of physical-chemical processes (reduced solubility of CO₂ and 
temperature dependence of constants in the carbonate system) is 4 to 4.5% per degree Celsius, 
which is too small to explain this increase (Liu, Fukuda and Matsuda, 2006). This suggests that 
biological processes appear to cause changes to seawater pCO₂ that are more significant than the 
temperature effect on the solubility pump alone. 

Although there is no direct measurement, a comparable fertilization effect may occur in marine 
environments due to the similar processes of carbon fixation involved. In Figure 2 we can see that 
we get a very good fit with the IPCC estimate for 1750 (IPCC, 2021) and the GCB figure 
(Friedlingstein et al., 2023), if we assume an increase of oceanic photosynthesis that is 
proportional to the increase of terrestrial photosynthesis. Each blue dot in Figure 2 represents the 
sum of the terrestrial GPP value from the 8 models, and a proportional value for the oceanic GPP. 
The green squares are estimates from the IPCC and GCB of the down fluxes. The good fit with 
the red line based on Mitscherlich’s Law confirms that the total GPP is close to the total down 
flux. Including the two extra data points in the dataset, results in a R2 value of 0.94. 

 
Figure 2: Similar to Figure 1 with extended axes and an assumed proportional GPP change in the 
oceans. The two added datapoints give a good fit to the best fit line:1. CO₂ mass and down flux in 
1750, based on IPCC-AR6 estimate (IPCC, 2021), and 2. the CO₂ mass and down flux in 2022, 
based on the Global Carbon Budget 2023 (Friedlingstein et al., 2023). The gray dashed line and 
dots show the result if no CO₂ fertilization effect in the oceans is assumed. 

 

If we assume a smaller than proportional fertilization effect from the oceans, or even zero, we 
will get a best fit line that is more flat than the original one, but with a similar concave curve. In 
all cases the increase of the global down flux is slowing down compared to the increasing CO₂ 
concentration in the atmosphere. The gray dashed best fit line shows the most extreme case with 
no CO₂ fertilization effect in the oceans, so with a stable oceanic down flux, that does not change 
with CO₂ concentration.  
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Even though we only have terrestrial GPP data, we can easily show that in all cases an increasing 
terrestrial GPP leads to a larger global down flux (land + oceans) and a longer residence time, 
which together are consistent with a higher atmospheric CO₂ concentration.  

The global down flux dG can be written as the sum of the flux to land dT and to the oceans dO. 

 𝑑ீ =  𝑑் + 𝑑ை = 𝑝் + 𝑑ை (5) 

The terrestrial GPP (pT) is almost equal to the terrestrial down flux (dT). When pT increases under 
the influence of more CO₂, the global down flux will also increase, as long as the down flux to 
the oceans (dO) is not decreasing under the influence of more CO₂. 

The slowing down of the greening under the influence of diminishing returns, represented by the 
concave curve in Figures 1 and 2 instead of a straight line, indicates a longer residence. It can also 
be seen if we express the residence time τ as a function of the terrestrial greening pT.  

 
𝜏 =

𝑐

𝑑ୋ
=

𝐶଴ −
1
𝐵

ln (1 −
𝑝୘
𝐴

)

𝑝୘ + 𝑑୓
 (6) 

Since in Mitscherlich’s law the maximum GPP is limited by the value A, the residence time will 
increase sharply at higher values of the terrestrial GPP, which we can see in Figure 4 (red line). 
The gray line shows the average residence time as a function of the terrestrial GPP if there is no 
CO₂ fertilization effect in the oceans, in which case the oceanic down flux is assumed stable in 
relation to varying GPP-values. This results in an even faster increase of the residence time.  

 

Figure 4: The calculated average residence time of the original dataset as a function of the terrestrial 
GPP (blue dots). The red line represents the best fit line according to Equation 6. The gray line and 
dots assume no fertilization effect in the oceans. 

 

Constraining factors such as nutrient and water diminish the return of vegetation associated with 
rising CO₂. This effect translates into a longer residence time. Figure 4 shows that as a result of 
the diminished return, the average residence time of CO₂ in the atmosphere increases with higher 
GPP values. As the CO₂ mass in the atmosphere is proportional to both the down flux and the 
residence time, it is clear that a green Earth with a large GPP is inextricably linked to a high CO₂ 
concentration in the atmosphere. Around 10,000 years ago, forest cover was 50% greater than 
today (Ritchie, 2021). The land use change since that period as a result of human deforestation 
and agriculture, is illustrated in Figure 5. With a mean GPP of 2.0 kgCm−2yr−1 forests represent 
the most productive land cover, while grasslands and croplands on average reach 1.5 and 1.8 
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kgCm−2yr−1, respectively. When these GPP estimates are combined with the historical land use 
change, it follows that the global terrestrial GPP was 4.4% larger in that period than today (Krause 
et al., 2022).  

Figure 5: Land use change over the past 10,000 years. Based on the average GPP values per square 
meter for forest, grassland and cropland, we can conclude that the total GPP 10,000 years ago was 
approximitly 4.4% larger than today. Image adapted from Our World in Data (Ritchie, 2021).  

 

Following Equation 6 and Figure 4, the residence time will increase relatively faster than the GPP, 
which implies that in that period the average residence time was at least as high as the current 
residence time of approximately 4.1 years, and thus also the amount of CO₂ in the atmosphere. 
We have no reason to believe that nature’s response in terms of GPP to the actual CO₂ level was 
very different from today, so a shorter residence time is very unlikely. We can therefore conclude 
that global GPP 10,000 years ago was at least as high as today. 

4. Discussion 

It is obvious that the application of Mitscherlich’s Law is a simplification of the complex 
processes that define the Earth’s vegetation. The diminishing return is confirmed for individual 
plant species, where the application for the total GPP might raise new complexities, like global 
variability with different growth rates for the many ecosystems, nonlinear interactions and long-
term effects (e.g. changes in the species composition) complicating the model. The available data 
from the 8 models show nevertheless a good fit, explaining that constraining factors like nutrient 
and water availability can be responsible for a slowdown of the greening. Apparently, the be-
havior of the sum of all vegetation does not fundamentally differ from that of individual plant 
species in this respect. It makes it evident that large GPP values lead to longer atmospheric 
residence times. 

In a period without human disturbance and with the same or higher GPP as today, a CO₂ con-
centration of approximately 280 ppm would imply a residence time of approximately 2.7 years 
(590 PgC / 216 PgCyr-1) or less. This would only be possible if nature’s response to the CO₂ level 
were fundamentally different from what we observe today. CO₂ is one of the constraining factors 
that define the growth rate of vegetation. A larger GPP at low CO₂ levels would only be possible 
if other factors like sunshine, nutrient and water availability, were significantly more favorable 
than today. Especially in our example of 10,000 years ago, this is very unlikely. The deforestation 
and expanding agricultural land since that period is primarily the result of human activities 
(Ritchie, 2021). There is no indication that the other limiting factors have significantly changed.  

As the present level of greenness is not exceptional in the history of the Earth, our results indicate 
that variations in atmospheric CO₂ concentrations up to levels comparable to or exceeding those 
observed today are possible. The view that human emissions are the only cause of rising 
atmospheric CO₂ levels is based on the assumption that, over decades or centuries, natural carbon 
fluxes tend to remain relatively balanced without significant human influence. The ocean and 
terrestrial carbon sinks are often defined by their capacity ‘to absorb a part of the human caused 
CO₂ emissions’. Without these human emissions, the natural yearly fluxes would cancel each 
other out, maintaining a stable atmospheric concentration at a level of typically 280 ppm (IPCC, 
2021; Friedlingstein et al., 2023).  

A precise balance between natural upward and downward fluxes is however unlikely. For plant 
respiration, you can argue that it is in some way related to the absorption of CO₂ by those same 
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plants. But decomposition, the degeneration of carbon compounds that are stored in large 
quantities in the soil and the oceans, has only a delayed and indirect connection to current 
photosynthesis. There are different drivers for the most important fluxes to and from the 
atmosphere. For photosynthesis (down flux), the CO₂ concentration in the atmosphere is the most 
important driver. But for respiration (up flux), temperature is the most important driver, as long 
as enough organic carbon compounds are available. Bacterial processes responsible for the 
breakdown of organic material on and in the soil are exponentially related to temperature, 
with Q10-values for soil respiration ranging from around 1.7 (approximately 5.4% per °C) to over 
6 (approximately 20% per °C)(Luan et al., 2013). Apart from the biological processes, the 
temperature dependence of physical-chemical processes in the seawater also causes additional 
emissions at higher temperatures (Liu, Fukuda and Matsuda, 2006; Takahashi et al., 2009). 

A period of rising temperatures can lead to more respiration from the large carbon buffers in the 
soil and oceans and thus a higher CO₂ concentration in the atmosphere and greening of the Earth. 
In a period of falling temperatures, the opposite effect can occur. As concluded by (Koutsoyiannis, 
2024b): “During cool periods, degradation slows more than photosynthesis, and this traps CO₂ 
into soil. During warm periods, carbon trapped in soils is released faster than photosynthesis can 
absorb it, and atmospheric CO₂ increases”. The total carbon mass remains conserved within the 
Earth system, as substantial carbon reservoirs on land and in the oceans effectively buffer changes 
in carbon distribution. The changes in the buffers are very small compared to the total amount of 
41,000 PgC (of which 3,100 PgC in the soil), a fortiori as the process of greening is relatively 
slow: 30% over a period of 120 years equals on average 0.2% per year. 

More vegetation corresponds to higher CO₂ levels. This may appear contradictory, as  plants 
absorb CO₂. However, greening is not the cause of the higher concentration but rather its result. 
The probable causality is  summarized in Diagram 1. 

 

Diagram 1: Simplified causality diagram that illustrates that the CO₂ concentration can change 
naturally, due to different drivers for the up flux and down flux. Global warming is the main driver 
(in orange) for more respiration and oceanic outgassing and has a (smaller) positive effect on global 
greening. The increased atmospheric concentration is the main driver (in green) for more 
photosynthesis and global greening, which results in more biomass and respiration. Increasing 
anthropogenic emissions can accelerate this process. 

 

Both higher temperatures and increasing anthropogenic emissions can lead to more CO₂ in the 
atmosphere, resulting in more photosynthesis and thus more vegetation. The effect is amplified, 
as more vegetation leads to more plant respiration and after some time biodegradation of the extra 
biomass. Increased temperatures also have a positive impact on the CO₂ outgassing of the oceans. 
Another element is the direct impact of temperature on global greening. Climate warming can 
enhance plant growth and extend the growing season in moderate and colder regions, but in 
tropical regions heat stress can reduce productivity. While less significant than CO₂ fertilization, 
the recent temperature increase resulted in a net positive contribution to global greening (Zhu et 
al., 2016).  
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The important role of temperature in natural CO₂ fluctuations is supported by the proven 
unidirectional causal relationship between temperature and CO₂ (Koutsoyiannis et al., 2023), and 
the developed mathematical framework that results in excellent agreement of the recent global 
warming with accurately measured CO₂ changes (Koutsoyiannis, 2024a). It also explains the 
abundance of vegetation 10,000 years ago, in the Holocene Thermal Maximum with relatively 
high temperatures.  

In addition to global warming, human emissions have contributed to the greening process and so 
to the recent CO₂ rise. However, there is no need to assume a problematic ad hoc behavior for 
anthropogenic CO₂. According to the IPCC human emitted CO₂ accumulates and remains much 
longer in the atmosphere than natural CO₂, up to more than 100,000 years, which cannot be 
explained in the uncompartimented and well mixed atmosphere. Not the emissions, but the 
atmospheric concentration is the dominant driver for the uptake of CO₂ in the biosphere and 
through the oceans, which cannot differentiate based on the source of the CO₂ molecules. 

5. Conclusions 

Based on the relationship of the CO₂ concentration and the actual GPP values of 8 long term 
models, we showed that the global GPP response to increasing CO₂ follows Mitscherlich's Law, 
demonstrating diminishing returns. While CO₂ initially drives greening, its fertilization effect is 
slowing down due to limitations from other factors like nutrient availability and water. This 
implies that continued atmospheric CO₂ increases will lead to relatively smaller gains in GPP, 
and thus an increasingly longer CO₂ residence time. The global GPP is by far the most important 
component of the down flux to land and oceans. As the CO₂ concentration is proportional to the 
down flux and the residence time, a ‘green Earth’ is inextricably linked to high atmospheric CO₂ 
concentrations.  

The current level of Earth's greenness is not extraordinary, suggesting that the present atmospheric 
CO₂ concentration is also not exceptional. This indicates that there have been natural variations 
in both GPP and CO₂ levels over time. These fluctuations are likely to occur, due to a combination 
of different drivers for the up and down flux and the large reservoirs of organic carbon in the soil 
and oceans. Rising temperatures increase the up flux to the atmosphere due to more terrestrial and 
oceanic respiration and more outgassing from oceans, leading to a higher atmospheric CO₂ level. 
This CO₂ level is the main driver for more greening and thus the down flux.  

Human emissions have accelerated the greening process, but even if we assume that human 
emissions are the dominant cause for the recent CO₂ rise, it is still unlikely that historical CO₂ 
levels were as low as generally accepted.  All assumptions discussed herein relate exclusively to 
how nature responds to changes in CO₂ levels, and do not address the underlying causes of 
increased CO₂ levels. A low CO₂ level of 590 PgC (280 ppm) combined with a similar high level 
of greenness would only be possible if nature’s response to CO₂ were fundamentally different 
from what we observe today. 

This conclusion contradicts the assumed low CO₂ concentrations in the past 800,000 years, based 
on the ice core records from Antarctica. In this context, we refrain from delving into the specifics 
of these records. However, it is important to acknowledge that ice core records are not direct 
measurements, but serve as proxies for historical CO₂ concentrations, which need correct 
interpretation and calibration, and which involve significant uncertainties. Several studies have 
raised serious questions regarding the accuracy and reliability of ice core data, especially with 
respect to the dissolvement of CO₂ in melting water the many years before the air bubbles in the 
ice are fully closed (Jaworowski, Segalstad and Ono, 1992; Jaworowski, Segelstad and Hisdsal, 
1992; Harde, 2017). 

The likelihood of higher CO₂ levels in the history of the Earth supports other studies that have 
identified temperature as a primary driver of the increase of the atmospheric CO₂ concentration 
(Harde, 2019; Berry, 2021; Koutsoyiannis, 2024a). The temperature dependence of the main 
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fluxes to the atmosphere makes it unnecessary to assume an  ad hoc behavior for human CO₂ in 
the atmosphere, with a deviant (much longer) residence time than other CO₂.  
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Abstract 

Earth’s average annual temperature has increased by near 1.50 C  since  the  19th  century.  This  has  
been analysed principally through computer-based climate models built up from causal hypothe-
ses. The resulting theory of anthropogenic climate change (ACC) has the central hypothesis that 
observed global warming is driven linearly by rising atmospheric concentrations of greenhouse 
gases (GHG), especially carbon dioxide (CO2) from human activities. Analysis here adopts a sta-
tistical approach that examines warming from the perspective of a researcher in financial markets. 
The rationale is that climate and markets have much in common as complex, truly global systems 
with non-linear, hard-to-monitor external influences and multiple feedbacks; each is multidisci-
plinary; and much of the data in both disciplines is time series, for which it is notoriously difficult 
to establish cause and effect.  

The principal finding is that the central hypothesis of ACC seems spurious, and due to simulta-
neous rises in global temperature and  atmospheric  CO2  which  independently  follow unrelated,  
time trending variables. ACC is further questioned by the existence of joint test and missing var-
iables problems. Exploring CO2’s limited ability to explain warming by incorporating unsus-
pected forcers shows that  humidity  leads  temperature  and  explains  most  of  its  increase;  further,  
oceanic oscillations and cereal production are stronger  of temperature than COexplanators 2.  

This statistically-based study adds value to existing physics-based climate models through a com-
plementary analytical perspective that tests the robustness of models to real world data. It con-
cludes that human activity is contributing to global warming, but herding around the forcing role 
of carbon combustion has seen its influence exaggerated. This has obvious implications for the 
effectiveness of decarbonisation as a policy to manage global warming. 

Keywords: climate change; ACC theory; hypothesis testing; econophysics; multidisciplinary re-
search; temperature forcers  
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1. Introduction 

This study contributes to scientific investigation of changes in Earth’s average temperature over 
recent decades by examining how well it is explained by the theory of anthropogenic climate 
change (ACC).  

Analysis offers a complementary perspective to the principal research technique used by climate 
scientists which is computer models based on scientific hypotheses that are tuned to observed 
climate (Randall et al., 2019). It applies the type of statistical scrutiny that is common in finance 
research (e.g. Dougherty, 2011) to the central hypothesis of ACC which is that observed global 
warming is driven linearly by cumulative CO2 emissions from human activities (Jarvis & Forster, 
2024; Masson-Delmotte et al., 2021: page 28). Such an outside view enables a clear eyed exami-
nation of aspects of climate science that are not typically tested (Kahneman & Lovallo, 2003), 
which should  lessen the risk of incorrect inferences and open new channels to detect unsuspected 
temperature forcers.  
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The statistical approach here has two further motivations. One is to extend an important aspect of 
the scientific method through replication studies and alternative analytical approaches that test 
whether a theory is robust and thus should be acted on (Armstrong & Green, 2022). To date, 
models have been the principal tool for understanding past, present and future climate; and there 
has been limited research along statistical lines. This dates to 1992 when the Intergovernmental 
Panel on Climate Change (IPCC) concluded that statistical shortcomings in temperature and other 
data required “a physical model that includes both the hypothesized forcing and the enhanced 
greenhouse forcing ... to make further progress” (Houghton, Callander, & Varney, 1992: 163). 
Since then the length and reliability of climate data have improved markedly. 

The second motivation for this paper is that - although climate change is multidisciplinary - its 
science has faced minimal scrutiny from outside the discipline. Although climate and finance lie 
in different environments and institutional settings they have much in common. Both are complex, 
truly global systems with non-linear, hard-to-monitor external influences and multiple feedbacks; 
each is multidisciplinary with impacts on and from Earth’s environment, economy, society and 
demography; and much of the data in both disciplines is time series, for which it is notoriously 
difficult to establish cause and effect (Liang, 2014).  

Such similarities established the field of econophysics which applies physics research practices 
to economics (Chakraborti, Toke, Patriarca, & Abergel, 2011). Its climate related literature in-
cludes examination of  evaluation of climate change (Harris, Roach, & Codur, 2017; Keen, 2022; 
Nordhaus, 2019; Tol, 2024), the statistical aspects of relationships between climate variables 
(Carter, 2008; Kaufmann, Kauppi, & Stock, 2006b; McMillan & Wohar, 2013), reliability of cli-
mate models (Green & Soon, 2025; Scafetta, 2024), forecasts of climate change impacts (Burke, 
Dykema, Lobell, Miguel, & Satyanath, 2015), and decisions within IPCC reports (Green & 
Armstrong, 2007). 

The intent of this analysis is to independently test ACC using field observations which provides 
rigor and so generates greater confidence leading to optimum climate policies. 

2. Materials and methods 

The research objective here is to evaluate core physical relationships behind the theory of anthro-
pogenic climate change (ACC) as set out in the IPCC’s latest Assessment Report (AR6) (Masson-
Delmotte et al., 2021: pages 6-7 and 28) which are that: the climate has warmed at a rate that is 
unprecedented in at least the last 2,000 years due to emissions from human activities including 
greenhouse gases (GHG: mainly CO2, also methane, nitrous oxide and nitrogen oxides) and land 
use, and this is captured in a near-linear relationship between cumulative anthropogenic CO2 
emissions and global warming.  

This is depicted in Figure 1. 

  
Figure 1: Diagram of theory of anthropogenic climate change 

 

The most widely cited evidentiary support for this model is shown in Figure 2. The top chart 
supports the contention that “observed increases in well-mixed greenhouse gas (GHG) concen-
trations since around 1750 are unequivocally caused by human activities” (AR6, page 4). The 
lower chart supports the contention “that CO2 and temperature covary” (AR6, page 44). 
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Figure 2. At top: Human emissions of CO2 and atmospheric concentration since start of the industrial 
revolution (NOAA, 2025).  Below:  CO2  and  global temperature since  the  mid-19th century (LaPointe,   
2024) (charts are in the public domain). 

A dominant component in each of CO2 emissions, atmospheric CO2 and global temperature is 
time. The possibility that this could lead to  spurious correlations has been recognised by climate 
scientists since the 1980s (Houghton, Callander, & Varney, 1992: 163), but is all too rarely taken 
into account (Cummins, Stephenson, & Stott, 2022).  

The research objective of this paper is to validate the key causal relationship underlying ACC 
using observed climate and related data, which involves testing four hypotheses (Bunge, 2017; 
Kampen, 2011): 

H1a. Correlation between atmospheric concentration of CO2 and global temperature is 
not spurious 

H1b. Causality is clear in global warming so that global temperature consistently lags the 
independent, causal variable, CO2 (or at least the two co-move, and CO2 does not lag 
temperature) 

H2. The null hypothesis (that observed global warming would have occurred in the ab-
sence of emissions from human activities) can be tested independently of any assumptions 

H3. The CO2-drives-warming hypothesis underlying ACC explains observed data (i.e. no 
missing variables) 

H4. Observed warming has no credible explanation other than that of rising atmospheric 
concentration of CO2 and other greenhouse gases. 
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Analysis aims for reasonable statistical confidence (p<0.05), and uses adjusted R-squared as a 
measure of goodness of fit between hypothesised temperature forcers and observed temperature 
(Chen & Qi, 2023). It uses relatively simple statistical tools to avoid assumptions, and to ensure 
conclusions are accessible to a generalist audience. In addition, although not reliant on climate 
science, analysis seeks to remain grounded in the science by relying as much as possible on ma-
terial from IPCC Assessment Reports.  

Three analytical techniques will be used. The first is univariate linear OLS regression to determine 
best fits of global temperature (the dependent variable) against independent variables (CO2 and 
other candidate temperature forcers) as per the following model: 

𝐺𝑙𝑜𝑏𝑎𝑙 𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 =   𝛼୬ +  𝛽୬ ·  𝐼𝑛𝑑𝑒𝑝𝑒𝑛𝑑𝑒𝑛𝑡 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒୬     (1) 

where 𝛼୬and  𝛽୬ are intercept and slope constants for forcing variable n.  

The second technique examines the temperature-CO2 relationship for spurious correlation, which 
arises between time series variables when correlations stem from their shared link to a third vari-
able such as time. To illustrate this, consider two variables, global temperature, T, and atmos-
pheric carbon dioxide concentration, C, that are linear functions of a third variable, t, as per the 
following: 

T = a + b·t ,              (2) 

C = c + d·t .           (3) 

Thus:         𝑡 =
்ି௔

௕
=  

஼ି௖

ௗ
 ,          (4) 

which makes it easy to see how T can seem to be a highly significant function of C solely because 
of their shared link to t.  

The statistical solution is to validate correlation between the variables by establishing causation 
between changes in their levels (i.e. the current value minus its prior period value). If the co-
movement between T and C reflects a true linear relationship such as: 

T = g + h· C              (5) 

Then:    
డ்

డ௧
= 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡

డ஼

డ௧
          (6) 

Thus, change in C should cause a proportional change in T, and both their changes and levels will 
co-vary in a constant, linear relationship.  

The final technique tests for Granger causality, which was developed in economics and subse-
quently applied in other fields including climate change (Kampen, 2011; Kaufmann, Kauppi, & 
Stock, 2006a). The intuition is that causality (in the statistical, not scientific, sense) is demon-
strated when forecasts of any variable based on its values in earlier periods can be improved by 
adding earlier value(s) of a second, causal variable. Consider the following equations: 

𝑌௧ =  𝛼ଵ +  𝛽ଵ ∙ 𝑌௧ିଵ +  𝛽ଶ ∙ 𝑌௧ିଶ             (7) 

𝑌௧ =  𝛼ଵ + 𝛽ଵ ∙ 𝑌௧ିଵ + 𝛽ଶ ∙ 𝑌௧ିଶ + 𝛽ଷ ∙ 𝑋௧ିଵ + 𝛽ସ ∙ 𝑋௧ିଶ .       (8) 

Variable X is said to Granger cause variable Y if equation (8) gives a better estimate of Yt than is 
given by equation (7).  

Data used in the analysis are in the public domain, and details of definitions and sources are set 
out in Table 1. Analysis uses all available data during the period 1959 to 2024. The start year is 
chosen as the first full year when observational data for the key variable atmospheric concentra-
tion of carbon dioxide became continuously available from instrument observations.  

Analysis employs EViews 13, which is an econometrics analytical package (S&P Global, 2024). 
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Table 1: Definitions and sources of data used in analysis and figures. 

Variable Description Source 

Atlantic Mul-
tidecadal Oscil-
lation (AMO) 

Cyclical shifting of ocean tem-
peratures in the North Atlantic  

NOAA Physical Sciences Laboratory 
https://www.psl.noaa.gov/data/timeseries/AMO/ 

Cereal  
production 

Global production of dry 
grains (barley, cereals, maize, 
millet, mixed grain, oats, rape 
seed, rice, rye, and wheat). 

Annual data available since 1962 from Food and 
Agriculture Organization of the United Nations. 
https://www.fao.org/faostat/en/#data/QCL  

Carbon dioxide 
(CO2) 

Anthropogenic emissions of 
carbon  

From Global Carbon Budget 2024 (Friedlingstein et 
al., 2023) 

Atmospheric concentration of 
CO2 in ppm  

Monthly since 1958 from Mauna Loa 
(https://gml.noaa.gov/ccgg/trends/data.html); and 
since about 1970 from Cape Grim, Australia 
(https://capegrim.csiro.au/)   and Barrow 
(https://gml.noaa.gov/aftp/data/trace_gases/co2/flas
k/surface/txt/co2_brw_surface-
flask_1_ccgg_month.txt).  

Humidity 

Annual mean specific humid-
ity (water vapour as proportion 
of moist air by mass relative to 
1981-2010).  

Data available since 1974 from UK Met Office. 
https://climate.metoffice.cloud/humidity.html 
datasets 
 

Temperature 
Global temperature anomaly 
vs historical average (0C).  

Data available monthly since 1850 from: 
www.ncei.noaa.gov/access/monitoring/global-tem-
perature-anomalies/anomalies; and  
https://www.metoffice.gov.uk/hadobs/had-
crut5/data/HadCRUT.5.0.2.0/download.html.  
Annual data are available from 
https://www.ncei.noaa.gov/access/monitoring/
global-temperature-anomalies/anomalies.         

3. Results 

This section reports statistical evaluations of physical evidence relating to ACC’s central premise 
that observed warming is driven linearly by accumulated atmospheric CO2 from human-related 
carbon combustion. Analysis builds on previous work in climate science (e.g. Jolliffe & 
Stephenson, 2012; M. Nelson & Nelson, 2024; Nzotungicimpaye & Matthews, 2024; Von Storch 
& Zwiers, 2002; Zwiers & Von Storch, 2004) and economics (Green & Soon, 2025; May & Crok, 
2024). 

3.1 Possibly spurious relationship between global temperature and CO2  

Most statistical tests assume that data have a constant, or stationary, mean and standard deviation, 
and thus oscillate around fixed values. A non-stationary distribution invalidates such analysis, 
and this statistical risk is quantified by testing time series for a unit root whose presence means 
they are not stationary. Table 2 shows the p-values from augmented Dickey-Fuller (ADF) tests 
and indicates that both temperature and CO2 are non-stationary.  

Table 2: p-values of unit root tests for temperature and CO2.  

Variable ADF test 
Atmospheric CO2 concentration 0.999 

Global temperature 0.999 

Non-stationarity is common in economics whose data are dominated by time series, and research-
ers  have managed this by analysing relationships between differences or changes in variables as 
well as between levels (e.g. Christian & Barrett, 2024; C. R. Nelson & Plosser, 1982). Differences 

https://www.metoffice.gov.uk/hadobs/hadcrut5/data/HadCRUT.5.0.2.0/download.html
http://www.ncei.noaa.gov/access/monitoring/global-temperature-anomalies/anomalies
http://www.ncei.noaa.gov/access/monitoring/global-temperature-anomalies/anomalies
http://www.ncei.noaa.gov/access/monitoring/global-temperature-anomalies/anomalies
https://www.psl.noaa.gov/data/timeseries/AMO/
https://www.fao.org/faostat/en/#data/QCL
https://gml.noaa.gov/aftp/data/trace_gases/co2/flask/surface/txt/co2_brw_surface-flask_1_ccgg_month.txt
https://gml.noaa.gov/aftp/data/trace_gases/co2/flask/surface/txt/co2_brw_surface-flask_1_ccgg_month.txt
https://gml.noaa.gov/aftp/data/trace_gases/co2/flask/surface/txt/co2_brw_surface-flask_1_ccgg_month.txt
https://www.ncei.noaa.gov/access/monitoring/global-temperature-anomalies/anomalies
https://www.ncei.noaa.gov/access/monitoring/global-temperature-anomalies/anomalies
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are calculated for each observation by subtracting its previous value, which removes trends. For 
most data series, this makes the mean stationary and thus reliable in regression analysis that can 
unravel underlying dynamics. 

This is done for atmospheric CO2 and temperature since 1960 in Figure 3. As shown in the left 
chart, levels of atmospheric CO2 and global temperature moved together. However, this was not 
true of their changes: annual change in CO2 has accelerated while that for temperature continued 
at its long-term rate. If CO2 were forcing global temperature, the latter‘s rate of change should 
also have quickened. Thus the correlation between temperature and CO2 is likely spurious and 
cannot be relied on: this rejects hypothesis 1a that correlation between atmospheric concentration 
of CO2 and global temperature is not spurious.  

This conclusion matches that reached by others that CO2 has, at best, a weak and probably spuri-
ous relationship with temperature (including Beenstock, Reingewertz, & Paldor, 2016; McMillan 
& Wohar, 2013). Alternatively the result is not inconsistent with a non-linear CO2-temperature 
relationship that has also been suggested (e.g. Beenstock, Reingewertz, & Paldor, 2012; Jarvis & 
Forster, 2024). 

 

Figure 3. Plots of levels and annual changes in atmospheric concentration of CO2 and global tempera-
ture since 1960 (prepared by the author using data described in Table 1).  

In short, the central relationship of ACC appears to be spurious, and possibly due to shared time 
properties of atmospheric concentration of CO2 and global temperature.  

3.2 Causality in relationship between CO2 and temperature 

The lead-lag relationship between CO2 and temperature which is central to statistical causality of 
climate change is examined in Table 3 using annual data in univariate regressions of global tem-
perature on atmospheric concentration of CO2. The left half of the table analyses levels, and the 
right half analyses changes. The first column of the chart shows the CO2 lead (where 1 means 
CO2 leads temperature by one year), while other columns show slope and associated t-statistic 
and R-squared for values of levels and annual changes.   

Table 3: Slope and associated t-statistic and R-squared from univariate regression of global tempera-
ture on atmospheric concentration of CO2 as per eq.(1), where 𝛼୬and  𝛽୬ are intercept and slope con-
stants for forcing variable n. Covers levels and annual changes since instrumental data became avail-
able in 1958. The first column shows the CO2 lead, where 1 means CO2 leads temperature by one 
year. Level of significance: * < 0.05; ** < 0.01. 

CO2 lead 

Annual changes 

Levels Changes 

slope t-stat R-sqd slope t-stat R-sqd 

2 0.011 ** 27.4 0.92 0.007 0.32 0.00 

1 0.011 ** 27.8 0.92 -0.038 1.74 0.03 

0 0.010 ** 28.7 0.93 0.057 ** 2.89 0.11 

-1 0.010 ** 28.3 0.93 0.064 ** 3.27 0.13 

-2 0.010 ** 26.7 0.92 -0.021 1.01 0.00 
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Starting with levels in the left half of the Table , there are statistically strong (p<0.01) positive 
correlations between temperature and CO2 at both leads and lags of up to at least two years. Thus 
there is no consistent cause and effect in this relationship which casts further doubt on causality 
as previously flagged (e.g. Davis, 2017; Koutsoyiannis, 2024).  

Given the likely spurious relationship between levels of temperature and CO2, a more telling test 
of the lead-lag relationship is shown in the right half of Table  3 which analyses the relationship 
between changes in global temperature and atmospheric concentration of CO2. Neither one or two 
year-ahead CO2 change has a statistically significant relationship with lagged temperature; con-
current values have a statistically significant (p<0.01) relationship so that temperature and CO2 

co-move; and there is a significant relationship between changes in year-ahead temperature and 
lagged CO2. In short, changes in CO2 do not consistently lead changes in temperature.  

In unreported results, similar findings came from analysis of relationships between annual per-
centage changes in temperature and atmospheric CO2.  

Another perspective on ACC’s CO2 emissions-temperature relationship is that of Granger causal-
ity, which is examined in Table 4. Starting with levels of variables in panel A, temperature is 
strongly autocorrelated, and about 90 percent of future temperature is explained by its earlier 
values; adding previous levels of CO2 slightly increases R-squared (or goodness of fit) from 89 
to 93 percent.  

Changes in variables are shown in panel B. Lagged values of temperature (i.e. β1 and β2) are 
highly significant (p<0.01). Adding previous values of change in CO2 shows insignificant co-
efficients on CO2 change; reduces the significance of β1 and β2; and cuts explanatory power of 
the model (i.e. R-squared) from 16 to 14 percent.  

Thus CO2 does not Granger cause temperature.  

Table 4: Granger causality tests using eqs (7) and (8), where temperature is variable Y and CO2 is 
variable X. Level of significance: * < 0.05; ** < 0.01. 

 α1 β1 β2 β3 β4 Adjusted R-sqd 

Panel A: Levels of variables 

Equation (7) 0.0222 0.740 ** 0.266 *   0.888 

Equation (8) -3.166 0.370 * -0.232 -0.038 0.049 0.928 

Panel B: Changes in variables 

Equation (7) 0.031 -0.368 ** -0.383 **   0.163 

Equation (8) 0.013 -0.336 * -0.392 ** -0.006 0.017 0.140 

In terms of causality, CO2 does not consistently lead temperature and  changes  in  CO2  do  not  
Granger cause change in temperature. This rejects hypothesis 1b that causality is clear in global 
warming so that global temperature consistently lags the independent, causal variable, CO2 (or 
at

 
least the two co-move, and CO2 does not lag temperature). 

3.3 Robustness tests of the weak CO2-warming link 

This section repeats analysis in the previous section using annual temperature data since 1971 
from the UK Met Office Hadley Centre observations dataset HadCRUT5 and NASA’s GISS; 
along with CO2 data for the second and third longest datasets  from Barrow,  Alaska  and  Cape  
Grim, Australia.  

Figure 4 plots annual changes in various combinations of variables and shows the same pattern 
as Figure 3, namely that annual change in global temperature has been constant even though the 
annual change in atmospheric CO2 has been increasing. Thus there is not a  constant  linear  rela-
tionship between changes in any of the CO2-temperature combinations, which confirms the rela-
tionship is likely spurious. 
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Figure 4: Graphs of annual changes in global temperature using HadCRUT5 and NASA GISS temper-
ature datasets, and in atmospheric concentrations of CO2 from Barrow, Alaska and Cape Grim, Aus-
tralia (prepared by the author using data described in Table 1). 

 

Table 5 reports slope and associated t-statistic from univariate regression as per equation (1) of 
annual changes in global temperature using HadCRUT5 and NASA GISS temperature datasets 
against changes in atmospheric concentrations of CO2 from Barrow, Alaska and Cape Grim, Aus-
tralia. The pattern here is similar to that in Table 3 where year-ahead CO2 has no statistically 
significant (p>0.05) relationship with lagged temperature; concurrent values have statistically sig-
nificant (p<0.05) relationships so that the temperature and CO2 co-move; and there is a significant 
relationship (p<0.01-0.05) between changes in year-ahead temperature and lagged CO2 in both 
periods. In short, changes in CO2 lag changes in temperature rather than consistently leading, 
which confirms doubt on causality. 

Table 5: Slope and associated t-statistic from univariate regression of temperature on CO2 as per equation 
(1) for annual changes, since 1970s. The first column shows the CO2 lead, where 1 means CO2 leads 
temperature by one year. Level of significance: * < 0.05; ** < 0.01. 

CO2 lead 

HadCRUT5 NASA GISS 

Barrow Cape Grim Barrow Cape Grim 

slope t-stat slope t-stat slope t-stat slope t-stat 

2 0.003 0.13 -0.062 1.76 0.005 0.27 -0.040 1.30 

1 -0.023 1.11 0.043 1.35 -0.023 1.16 -0.013 0.41 

0 -0.001 0.03 0.074 * 2.30 0.003 0.13 0.073 * 2.42 

-1 0.075 ** 4.53 -0.015 0.48 0.075 ** 4.83 0.047 1.56 

-2 -0.029 1.52 -0.039 1.21 -0.027 1.52 -0.061 1.82 

 

Table 6 repeats Granger causality tests using changes in variables. Lagged values of HadCRUT 
and GISS temperature (i.e. β1 and β2) are significant (p<0.05). Adding previous values of change 
in Barrow CO2 reduces the significance of β1 and β2.; shows insignificant coefficients on CO2 
change; and cuts explanatory power of the models (i.e. R-squared falls). This robustness test fur-
ther confirms that change in CO2 does not Granger cause temperature.  
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Table 6: Granger causality tests using the equations(7) and (8), where change in temperature is var-
iable Y and change in atmospheric CO2 is variable X. Level of significance: * < 0.05; ** < 0.01.  

 α1 β1 β2 β3 β4 Adjusted R-sqd 
Panel A: changes in HadCRUT temperature data and Barrow CO2 data 

Equation (7) 0.041 -0.387 ** -0.342 *   0.149 

Equation (8) 0.054 -0.395 ** -0.345 * -0.001 -0.006 0.113 

Panel B: changes in GISS temperature data and Barrow CO2 data 

Equation (7) 0.040 -0.342 * -0.343 *   0.132 

Equation (8) 0.042 -0.346 * -0.349 * 0.001 -0.02 0.093 

In summary, robustness tests using additional data sets confirm earlier findings. In particular, 
annual change in various measures of atmospheric CO2  has been steadily  increasing  but  this  has  
not altered the rate of change in global temperature, as would occur  if  CO2  were  forcing  temper-
ature. In addition, changes in CO2 do not consistently lead temperature changes as  also  would  
occur if CO2 were forcing  temperature;  rather, temperature leads one-year lagged change in CO2.  
Nor do changes in CO2 Granger cause change in temperature.  

3.4 Testable, independent null hypothesis  

The null hypothesis of ACC is that today’s global temperature would have occurred in the absence 
of CO2 emissions from human activities.  To  disprove  this  requires  evidence  that  atmospheric  CO2  

has driven temperature  higher  than  its  natural  level.  The  typical  approach  is  to  fingerprint  causes  of
 warming  using  climate  models  that  first  incorporate  only  natural  forcers  (which  are  limited  to  solar

 radiation  and  volcanic  activity:  AR6,  page  6)  and  then  overlay  anthropogenic  forcings  (Bindoff
 

et
 al.,  2013;  Zhai,  Zhou,  &  Chen,  2018).  According  to  IPCC:  “observed  warming  (1850-

2019) is only reproduced in simulations including human influence” (AR6, page 516). 

Two points arise here. First is that only two natural forcers are incorporated in models, whereas 
the literature reports many other natural influences on climate, including: Earth’s orbital inclina-
tion (Muller & MacDonald, 1995); length of day (Lopes, Courtillot, Gibert, & Le Mouël, 2022); 
geomagnetism (Vares & Persinger, 2015); the Atlantic Multidecadal Oscillation (AMO) (Kerr, 
2000) and Southern Oscillation (SOI) (Mazzarella, Giuliacci, & Scafetta, 2013); cloud seeding 
by cosmic radiation (Svensmark, 2007) and solar activity (Lockwood, 2012); humidity (Al‐
Ghussain, 2018) and changes in cloud structure (Dübal & Vahrenholt, 2021); and photosynthesis 
(Bender, Sowers, & Labeyrie, 1994) and plant physiology (McElwain & Steinthorsdottir, 2017).  

In addition there are multiple studies depicting strong links between temperature and intuitively 
obvious anthropogenic forcers such as global population and GDP per capita (Coleman, 2023), 
as well as less certain forcers such as US postage costs (Green & Soon, 2025). This opens up a 
possible missing variables problem as discussed in the following section.  

The second point is that models are tuned by altering their internal parameters to reduce mismatch 
between their output and observations (Hourdin et al., 2017). That is, all temperature change is 
attributed to anthropogenic forcing and just two natural forcings; and models’ parameters are 
adjusted accordingly. The net is that computer-based climate models are built up from the as-
sumption that CO2 forces temperature, and then calibrated to match observed temperatures. This 
opens up what finance terms the joint test problem, which occurs when an hypothesis (i.e. that 
human carbon emissions cause warming) is tested using in-sample data and relies on the hypoth-
esis being tested: any verification is tautological, which leads to herding around an uncertain con-
clusion and correlated scientific errors.  

Testing the null hypothesis requires independent determination of anthropogenic components of 
temperature and atmospheric CO2 over time (Hegerl & Zwiers, 2011). However, neither is di-
rectly observable, and experiments to determine them are impractical. Thus it is impractical to 
directly test whether warming is occurring naturally, which rejects hypothesis 2 that the null hy-
pothesis of ACC (that observed global warming would have occurred in the absence of emissions 
from human activities) can be tested independently of any assumptions. 
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3.5 Alternative explanations of warming  

Almost all scientific literature accepts that ACC explains warming (Lynas, Houlton, & Perry, 
2021). The IPCC reports (AR6, pages v and 11): “it is unequivocal that human activities have 
heated our climate ... This warming is mainly due to increased GHG concentrations.” Other au-
thorities agree, such as the American Geophysical Union whose ‘Position on climate change’ says 
that “there is no alterative [sic] explanation [to ACC] supported by convincing evidence” (AGU, 
2019).  

Conversely, statistical analysis above shows only weak causal relationship between atmospheric 
CO2 and global temperature. In addition, the section above details multiple examples of natural 
and anthropogenic variables that are known to influence temperature, but are not included in mod-
els. This suggests the possibility of a missing variables problem where unsuspected forcers con-
tribute to warming.  

To demonstrate the potential impact of omitted forcers, Figure 5 plots levels and changes since 
1960 of temperature against Atlantic Multidecadal Oscillation (AMO), global cereal production 
and specific humidity. For each forcer, levels appear strongly correlated with temperature; and 
changes are also strongly and linearly correlated with temperature, indicating the correlations are 
not spurious. These relationships are markedly different to that for atmospheric CO2 and temper-
ature, where - as shown in Figure 3  - changes do not co-move.  

 

Figure 5: Levels and changes in non-CO2 related variables and NOAA temperature using available data 
since 1960. Top: temperature and Atlantic Multidecadal Oscillation (AMO); centre: temperature and 
global cereal production; bottom: global temperature and specific humidity. Graphs were prepared by 
the author using data with definitions and sources in Table 1. 

Table 7 quantifies the relationships in Figure 5. Panel A reports slope and t-statistic from linear 
regression of levels and changes since 1960 in NOAA temperature and in non-CO2 forcers of 
Atlantic Multidecadal Oscillation (AMO), global cereal production and specific humidity. By 
comparison to values for CO2 as a temperature forcer shown in Table 3 (slope and t-statistic, 
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respectively for: level 0.010 and 28.7; and changes 0.057 and 2.89), statistical relationships for 
levels of non CO2 forcers are almost as strong. However, using changes the statistical relation-
ships between temperature and the non-CO2 forcers are stronger than with CO2.  

Panel B reports Granger causality tests and shows that incorporating lagged values of each of 
Atlantic Multidecadal Oscillation (AMO), global cereal production and specific humidity consid-
erably increases the explanatory power of lagged values of temperature, with the R-squared rising 
from 16.2 percent to 19-21 percent. This is around 1.5 times the explanatory power of CO2.  

Table 7. Statistical tests of relationships between changes in NOAA temperature and non-CO2 
forcers,

 
namely Atlantic Multidecadal Oscillation (AMO), global cereal production and specific  Panel

 A  is  linear  regression  of  NOAA  temperature  against  each  forcer.  Panel  B  is  Granger  causality  test
 using  the  equations  (7)  and (8),  where  change  in  temperature  is  variable  Y  and  changes  in  forcers  are
 variable  X.  Level  of  significance:  *  <  0.05;  **  <  0.01.   

Panel A: Linear regression of NOAA temperature against forcer 

 
Atlantic Multidecadal   

Oscillation 
Cereal production Humidity 

 slope t-stat slope t-stat slope t-stat 

Levels 1.199 ** 8.60 0.482 ** 23.4 1.720 ** 19.0 

Changes 0.523 ** 6.64 -0.616 ** 2.86 1.035 ** 15.6 

 
Panel B: Granger causality test of changes in forcers 

 α1 β1 β2 β3 β4 Adjusted R-sqd 

NOAA temperature 0.031 -0.368 ** -0.383**   0.162 

AMO 0.026 -0.304 -0.228 -0.184 -0.180 0.203 

Cereal production 0.004 -0.295 * -0.360 ** 0.523 * 0.192 0.210 

Humidity 0.031 0.375 -0.011 -0.911 * -0.335 0.191 

Atmospheric CO2 0.013 -0.336 * -0.392 ** -0.006 0.017 0.140 

 
This section identifies three intuitively likely variables that can explain recent temperature rise 
better than atmospheric CO2. The fact that ACC is not routinely tested against these and/or other 
alternative hypotheses is a significant shortcoming in its scientific methodology (Green & Soon, 
2025).  

ACC’s confidence in CO2 as the sole explanation for observed warming seems inconsistent with 
statistical uncertainties discussed in earlier sections; in addition  the missing variables problem 
with ACC is obvious in light of CO2 explaining far less of temperature change than other intui-
tively  likely forcers of AMO, cereal production and humidity. This cautions that - although  cor-
relations

 
between temperature and forcing variables are necessary for causality – there are many 

candidate
 

variables. Simply choosing one   is not a valid approach to proof.  

This rejects hypothesis 4 that observed warming has no credible explanation other than that of 
rising atmospheric concentration of CO2 and other greenhouse gases. 

3.6 Summary 

To summarise the analysis above, it identifies several statistical shortcomings in ACC. The great-
est is uncertainty in ACC’s central hypothesis of a  direct  relationship  between  atmospheric  CO2  
and global temperature, which is likely spurious such as would arise from  shared time series 
properties of the variables. Moreover, incorporating lead-lag values in regressions shows that lev-
els of temperature and CO2  co-move with  no  evidence  that  CO2  forces  temperature;  and  analysis  
using changes shows that temperature leads one-year lagged change in CO2. This conclusion is 
supported by Granger causality tests, and robustness tests using alternative  temperature  and  CO2  
data sets.  
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In addition, ACC suffers the joint test problem that makes it impractical to dismiss the null hy-
pothesis that warming would have occurred in the absence of higher atmospheric CO2. The final 
statistical concern with ACC is a significant missing variables problem: global temperature has 
linear relationships since last century  multiple  natural  and  anthropogenic  variables  that  with are

 stronger  than  the  one  with  atmospheric  CO2.   

Statistical relationships derived above suggest the explanatory model for global warming as 
shown in Figure 6. CO2 emissions are driven by human population and industry; but emissions 
and atmospheric CO2 have only weak influence on global temperature, which is driven more 
strongly by AMO, cereal production and/or humidity. As an aside, these links are statistically 
based, and no attempt is made here to explain the science behind them.  

Figure 6. Revised causal relationships leading to observed global warming. 

4. Discussion 

A climate scientist commenting on this paper made several observations. First, analysis does not 
align with the climate discipline’s science-based focus on physical mechanisms which establish 
CO₂ as a primary driver of recent global warming. Moreover, climate is affected by multiple 
external forcings, which are direct and indirect and time-, space- and scale- dependent and so 
introduce multiple causality pathways with non-linear, varying relationships. Thus drawing con-
clusions about ACC’s credibility cannot rely on empirical studies or observational data, but re-
quires examining its physical processes using global climate models.  

This argument that models alone can be relied on is not, however, true of other disciplines, which 
are alert to implications of the retraction and replication literature (e.g. Ioannidis, 2005; Oransky, 
2022), and make it a point to ensure that their theory is able to withstand multifaceted scrutiny. 
The last includes real world tests and analysis using a variety of tools and techniques applied by 
other disciplines in similar research environments, such as finance as conducted here.  

The principal finding of this study is that the theory of anthropogenic climate change is not 
resilient to statistical analysis using real-world observations. In particular, the assumed linear 
relationship between global warming and atmospheric concentration of carbon dioxide is likely 
spurious and due to simultaneous, time-related rises in the two variables. In addition a num-
ber of natural and anthropogenic variables can explain warming better than CO2, especially 
humidity which leads temperature and explains up to 80 percent of its variation. The last link is 
well-recognised, but is typically dismissed with the assertion that it is a feedback of GHG-induced 
warming. This requires re-assessment. 

In short, the answer to the title’s question is: No, CO2 is at most a small contributor to ob-
served warming. Given that the key hypothesis within ACC is not demonstrably valid, 
knowledge of its science seems incomplete. This opens up a number of other possible explana-
tions for global warming such as: that climate sensitivity, or warming from a doubling in CO2 
concentration, is overstated; other factors are significant contributors to warming including At-
lantic Multidecadal Oscillation, global cereal production and specific humidity; or another plan-
etary scale human or geophysical phenomenon may be driving warming (Cohler, Legates, 
Soon, & Soon, 2025).  
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To close, evidence that elements of ACC do not withstand real world tests is troubling given 
strong public concern and high economic and social risk from climate change. More robust theory 
is essential to pave the way for optimum policy response to warming. 
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Abstract 

The stock-to-outflow ratio of CO₂ molecules in the atmosphere is about five years. Accordingly, 
only about 5.5% of the atmospheric CO₂ stock comes from fossil fuel emissions not yet absorbed 
by vegetation or oceans, while 94.5% originates from natural outgassing of oceans and soils. This 
interpretation is supported by the δ¹³C record at Mauna Loa Observatory (MLO). The 50% 
increase in vegetation productivity since 1900 can be attributed to higher atmospheric CO₂ 
concentrations and a longer growing season. Decarbonization policies may therefore affect only 
5.5% of atmospheric CO₂. Moreover, the strong month-by-month correlation, over nearly 800 
months, between the increments of the CO₂ stock at MLO (altitude 3.4 km) and the sea-surface 
temperature (SST) anomaly in the inter-tropical zone shows that 94.5% of atmospheric CO₂ 
reflects the time-integrated effect of past surface temperatures, themselves determined by surface 
insolation. ARIMA time-series modeling further supports the correlation between 12-month 
increments of MLO CO₂ and SST. By contrast, there is no correlation (R² = 0.01) between the 
detrended 12-month CO₂ increments and fossil-fuel emissions. Simple models of carbon fluxes 
and stocks for the oceans, atmosphere, and vegetation & soils, assuming ocean degassing driven 
by inter-tropical SST, reproduce the observed time series atmospheric CO₂, δ¹³C and vegetation 
productivity since 1900. In this context, IPCC theories and models based on concepts such as the 
Airborne Fraction, the Bern function, an adjustment time, the supposed persistence of 15–50% of 
fossil emissions in the atmosphere after 1000 years, a bottleneck between atmosphere and ocean, 
very low fluxes between surface and deep ocean, and Revelle’s buffer factor, appear to be 
misleading constructs. 

  

Keywords: Climate; CO2; carbon cycle; ARIMA; ocean out-gassing; 13C; 14C; airborne fraction; 
Bern function; simple carbon cycle models 
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1. Introduction 

This contribution follows on from several important articles on the carbon cycle that have given 
rise to argumentative discussions (Salby & Harde, 2021a, 2021b, 2022a, 2022b; Berry, 2021; 
Harde, 2017, 2019; Köhler et al., 2018), after (Beenstock et al., 2012; Cawley, 2011; Essenhigh, 
2009; Hocker, 2010; Pretis & Hendry, 2013). It incorporates results from (Campbell et al., 2017; 
Haverd et al., 2020; Koutsoyiannis, 2024a, 2024b; Lai et al., 2024; Levy et al., 2013; Segalstad, 
1998) and of (Munshi, 2015, 2016a, 2016b, 2016c, 2017). A complete list of symbols and 
abbreviations used in this paper is provided in Appendix A. 

2. Water, Carbon and Latent and Sensible Heat Cycles 

Differences in insolation and temperature between the inter-tropical zone and the high latitudes 
result in the transfer of latent heat (evaporation, then condensation) and sensible heat (water, water 
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vapor and CO2) from the warm surface oceans to the cold surface oceans and to the continents, 
thanks to the turbulent motion of air and of surface oceans; the ocean is the main reservoir of 
water, of mobile carbon and of heat. The partial pressure of CO2 in seawater varies as the power 
of 12.5 of the absolute temperature (in Kelvin) of this water (Sec. 8) and, for the same quantity of 
inorganic carbon per kg of seawater is, at 32°C, about 3.2 times greater than at 5°C. The contrast 
in sea surface temperatures means that there is an oceanic carbon degassing zone and an 
absorption zone separated by several thousand kilometers. 

These out-gassing and absorption of the order of 100 Gt-C/yr between the atmosphere and the 
surface oceans are extensions of fluxes between the surface ocean and the deep ocean, as 
expressed by (Levy et al., 2013): "We find that climatological physical fluxes of dissolved 
inorganic carbon (DIC) are two orders of magnitude larger than the other carbon fluxes and vary 
over the globe at smaller spatial scale. At temperate latitudes, the subduction of DIC and to a 
much lesser extent (< 10%) the sinking of particles maintain CO2 undersaturation, whereas DIC 
is obducted back to the surface in the tropical band (75%) and Southern Ocean (25%). At the 
global scale, these two large counter-balancing fluxes of DIC amount to +275.5 Gt-C/yr for the 
supply by obduction and –264.5 Gt-C/yr for the removal by subduction which is 3 to 5 times larger 
than previous estimates". These fluxes maintain the under-saturation or the supersaturation of 
surface seawater with respect to the air. These 275 Gt-C/yr have (finally!) been taken up by IPCC 
AR6 WG1, (Fig. 5.12, p. 700). 

For a reservoir, as for a bank account, the inflow over 12 months equals the sum of the outflow 
and the change in the reservoir’s content over that period. For atmospheric CO₂, the outflow is 
taken as one-fifth of the stock, consistent with the IPCC’s estimate of a mean residence time of 
roughly 5 years (≈ 5 yr when the biospheric outflow is taken as NPP = GPP/2, versus ≈ 4 yr when 
using GPP, here GPP denotes gross primary production, i.e. total photosynthetic uptake before 
vegetation respiration): the natural degassing is therefore: 

degas(𝑡) =
𝑋(𝑡)

5 𝑦𝑟
+

d𝑋(𝑡)

d𝑡
− 𝑓୤୭ୱୱ୧୪,  i.e. in ppm                                         (1) 

thus: 315/5 + 1 – 1 = 63 ppm/year in 1959 and 425/5 + 3.3 – 5 = 83.3 ppm/year in 2024. Over 66 
years, +20.5 ppm/year for natural degassing versus +4 ppm/year for the inflow from fossil fuels;  
end 2024: 83.3 / (83.3 + 5) = 94.3% is the contribution of the natural degassing to the total inflow. 

3. Tropical SSTs (20°S–20°N) Account for 83% of Post-1958 CO₂ Growth 

The autotrophic respiration of plants is invisible from observatories at Mauna Loa (altitude 3397 
m) or at South Pole (altitude 2837 m) far from any vegetation; at the surface on land 24-hour 
fluctuations in CO2 air content of up to 100 ppm are common, e.g. in July in Luxembourg (Massen 
et al., 2005; Massen & Beck, 2011) with a diurnal minimum and a nocturnal maximum. 

Table 1: The stock-to-outflow ratio, X(t)/absorb(t), has been about five years since pre-industrial times. 

Carbon flows in Gt-C/year and atmospheric stocks in Gt-C 
 Pre-industrial  1990 2024 

Absorption by ocean, i.e.  
absorboce 

70 (IPCC, 2007) 92 (IPCC, 2007) 103 

Absorption by vegetation, 
 i.e. absorbveg 

50 (Haverd et al., 
2020) 

61 (IPCC, 2007) 77 (Lai et al., 2024), 73 in 
2016 (Haverd et al., 2020) 

Atmospheric stock Gt-C (ppm 
in air), i.e. X(t) 

590 ? (278 ppm ?) 754 (356 ppm) 902 (425.3 ppm) 

Stock-to-outflow ratio, i.e.  
X(t) / absorb (t) 

4.9 years 4.9 years 5 years 

 

The area between 20°S and 20°N is three-quarters oceanic. Fig. 7.3.5 of (IPCC, 2007) for the year 
1990 (360 ppm at MLO) and for the pre-industrial period suggests an average residence time of 
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a CO2 molecule in the atmosphere of about 5 years, i.e. a half-life of 3.5 years, since each year 
20% of the CO2 in the atmosphere is absorbed.  IPCC (2001) §1.3 suggests a net carbon uptake 
by vegetation NPP (Net Primary Productivity) of the order of GPP/2, where GPP is Gross Primary 
Productivity. Haverd et al. (2020) estimate global GPP at 104 Gt-C/yr in 1900 and 146 Gt-C/yr 
in 2016, hence a "pre-industrial" NPP of 50 Gt-C/yr, 52 Gt-C/yr in 1900, 63 Gt-C/yr in 1990 and 
73 Gt-C/yr in 2016, and according to Lai et al. (2024) 77 Gt-C/yr recently. These indications 
overlap with those of (Donohue et al., 2013; H. D. Graven et al., 2013; Nemani et al., 2003; 
Pretzsch et al., 2014; Zhu et al., 2016). Cawley (2011) adopts 5 years as did Essenhigh (2009) 
and Bolin (1960). 

The total mass X(t) = Xnatural(t) + Xfossil(t) of carbon in the air, solution of dX(t)/dt = f(t) – X(t)/5yr, 
where f(t) is the sum of the ffossil(t) in-flux from fossil fuels and of the fnatural(t) in-flux from natural 
out-gassing by oceans and soils. This differential equation is linear, hence: 

   ௗ௑౜౥౩౩౟ౢ(௧)

ୢ௧
= 𝑓୤୭ୱୱ୧୪(𝑡) −

௑౜౥౩౩౟ౢ(௧)

ହ ௬௥
                                               (2) 

𝑋୤୭ୱୱ୧୪(𝑡) = ∫ 𝑒
ష(೟ష೟’)

ఱ yr
௧

௧బ
𝑓୤୭ୱୱ୧୪(𝑡’)𝑑𝑡’      (3)  

 𝑋୬ୟ୲୳୰ୟ୪(𝑡) = 𝑋(𝑡) − 𝑋୤୭ୱୱ୧୪(𝑡)                                                        (4) 

where X(t) is based on XMLO, series measured at the Mauna Loa Observatory since March 1958. 
Although fnatural(t) is poorly known, Xnatural(t) is the difference between two precisely known 
quantities. 

ffossil(t) comes from economic series: the CDIAC dataset (Boden et al., 2013) from 1751 to 2010 
and, since 1965, the BP Statistical Review of World Energy (British Petroleum, annual editions) 
(with values increased by 5% to account for cement production), adjusted so as to coincide with 
the last 45 years of CDIAC. Emissions for a given year are dated to the middle of that year  (e.g. 
emissions of the year 2020, recorded at date 2021.0, are to be dated 2020.5) or interpolated month 
by month between the dates 2020 and 2021. A +/– 5% seasonal modulation may be added (see 
carbonmonitor.org). 

 

Figure 1: Anthropogenic contribution dXfossil(t)/dt in ppm/yr to the annual atmospheric CO2 increase 
computed for three residence times τ of the carbon dioxide in the atmosphere: 5.5 years, 5 years and 4.5 
years. 

Figure 1 shows that carbon dioxide atmospheric residence times of 4.5 years or 5.5 years have 
almost no effect on the increments dXfossil(t)/dt, which differ by less than 0.1 ppm / (12 months). 
Uncertainty over lifetime will therefore have little effect on the calculation of: 
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𝑑𝑋୬ୟ୲୳୰ୟ୪(𝑡)

𝑑𝑡
=

𝑑𝑋(𝑡)

𝑑𝑡
−

𝑑𝑋୤୭ୱୱ୧୪(𝑡)

𝑑𝑡
                                          (5) 

Figure 1 also shows the 1973-1974 crisis, the growth of natural gas in the 1980s and 1990s, and 
the growth of coal use in China and South-East Asia between 2000 and 2012; for the three 
lifetimes 5.5, 5 and 4.5 years, the 1959-2020 averages of dXfossil(t)/dt are 0.315 ppm/year, 0.287 
ppm/year and 0.26 ppm/year. 

To de-seasonalize the variations in atmospheric stock X(t), we take 12-month increments centered 
in the middle of the 12 months: dX(t)/dt is close to X(t + 6 months) – X(t – 6 months). Figure 2 
shows that the two stationary series MLO increments minus the fossil fuel stock increments (the 
black curve) and the blue curve1 3.17 (AT(t) + 0.25°C) where AT(t) is the sea surface temperature 
anomaly of the HadISST series between 20°S and 20°N correlate: between the dates 1958.7 and 
2024.63, the correlation coefficient R of these series smoothed by a 3-month moving average is 
R2 = 0.795, despite disturbances induced by several major volcanic eruptions (red curve in Figure 
2) and a few mid-latitudes SST anomalies. Smoothing by a 12-month moving average yields R2 
= 0.83, but at the cost of losing some of the strength of the statistical test  (Munshi, 2016c). 

 

Figure 2: Black curve: increments Xnatural(t + 6 months) – Xnatural(t – 6 months) from the MLO series. 
Blue curve: 3.17 (AT(t) + 0.25°C) where AT(t) is the anomaly of the HadISST 20°S to 20°N series 
(Rayner et al., GRL), downloaded from knmi-climate explorer. The red curve shows 7× the stratospheric 
aerosol optical thickness at 550 nm, illustrating the cooling/insolation-reduction episodes associated 
with volcanic aerosols. Smoothing with a 3-month moving average has been applied. This figure 
independently confirms the relationship reported by Salby & Harde (2022a), i.e. see their Fig. 8. 

 
Between those dates XMLO went from 313.3 ppm to 422.9 ppm (+109.5 ppm), Xfossil from 4.6 to 
22.9 (+18.4 ppm), the sum of the monthly natural increments (the black curve) is 91.2 ppm, and 
the sum of the temperature effects (blue curve) is 91.7 ppm. Contributions to the total increase of 
XMLO are 16.7% (+18.4 ppm) for fossil fuel and 83.3%.for the Sea Surface Temperature controlled 
Xnatural increase. 

With the whole HadISST series 1870 to end of 2024 the addition of the 1860 monthly increments 

 
1 This coefficient is the result of the ratio between the variation in the growth rate and the corresponding 

variation in temperature:  3.17 =  Δ (increment over 12 months) / Δ temperature. An extended discussion 
of how the parameters of this type of equation are obtained is available in Maurin (2022), see Figure 3d. 
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given by: 3.17 (ATSST + 0.25°C) is 122.8 ppm, which added to the 280.2 ppm assumed at t = 1870 
derived from a logistic approximation of observations at MLO: 

𝑋ெ௅ை௟௢௚௜௦(𝑡) = 275 +
555.7

1 + 𝑒
(ଶ଴଺଻ି௧)

ସଶ.ଶ ௬௥

   in ppm                                   (6) 

and to the 23 ppm from fossil fuels yields the 426 ppm observed at MLO at time 2025.0. The 
discrepancies between the blue and black curves of Figure 2 are small compared with the seasonal 
fluctuations, which at MLO are +9 ppm between September and April and –7 ppm from May to 
September. 

 
Figure 3: As in Figure 2, but the blue curve here is 1.321 (AT(t) + 1.318°C), with AT(t) anomaly of the 
temperatures in the lower inter-tropical troposphere UAH MSU series starting in December 1978. No 
smoothing applied. 

With the UAH (University of Alabama in Huntsville) MSU (Microwave Sounding Unit) lower-
troposphere temperature anomaly series for the inter-tropical band (20° S–20° N) (Spencer et al., 
2017) UAH Version 6.0, shown here un-smoothed in Figure 3 , the correlation coefficient is R2 = 
0.66 and R2 = 0.75 with a 4-month moving average. See also (Hocker, 2010). Between 1978.9 
and 2024.0, the integral of the blue curve gives 77.3 ppm, added to the +12.6 ppm increase in the 
anthropogenic stock, is 89.9 ppm, close to the +90.5 ppm observed at MLO. 

 
Figure 4: Top red curve: ffossil(t) emissions in ppm/year. Bister (brownish) curve: 2 – 5 × stratospheric 
dust veil index. Black curve: ppm increments at MLO: 0.5 ppm/(12 months) during the 9 months centred 
on October 1992 and 2.2 ppm/(12 months) during the 9 months centred on October 1994. 

 

Figure 4 underlines the role of sea surface temperatures: from 1991 to end 1995, anthropogenic 
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emissions were constant, but the 12-month increments of XMLO(t) were 0.48 ppm/(12 months) 
over the 9 months centered on October 1992 (the eruption of Mount Pinatubo occurred in 1991), 
four times less than the 2.1 ppm/(12 months) over the 9 months centered on October 1994, after 
the end of the cooling brought by volcanic dust, which may have reduced inter-tropical out-
gassing and increased mid-latitude absorption. 

4. No Correlation Between Anthropogenic Emissions and X(t) Increments 

ffossil(t) may be approximated by flogis(t) = 17.92 Gt-C/yr / (1 + exp((2011–t)/29 yr)) and over 1950-
2024 by ffossil linear(t) = 1.39 Gt-C/yr + 0.118 (–1950+ t) = 0.1183 (t – 1938.23) Gt-C/yr, that is a 
linear trend b = +0.056 ppm/yr. With linearly increasing emissions b (t – t0), a residence time of 
τ = 5 years for CO2 molecules, t – t0 large enough for X (t0) exp(– (t–t0) /τ) to be negligible, Xfossil(t) 
is: 

න 𝑏
௧

௧బ

(𝑡ᇱ − 𝑡଴) 𝑒
ି(௧ି௧’)

ఛ d𝑡ᇱ = 𝜏 ∙ 𝑏 ൬𝑡 − 𝑡଴ − 𝜏 + 𝜏 · 𝑒
ି(௧ି௧బ)

ఛ ൰ ≈ 𝜏 ∙ 𝑏 ∙ (𝑡 − 𝑡଴ − 𝜏)       (7) 

The increment Xfossil(t) – Xfossil(t–1) is τ · b = 5 yr · 0.056 ppm/yr = 0.28 ppm or 0.59 Gt-C, this is 
the difference between the emissions of year t and those of year t – 5 yr. 

The grey curve in Figure 5 shows the 12-month increments of XMLO(t) observed since 1958; their 
average after 1995 is + 2.2 ppm/year, 7.9 times the + 0.28 ppm/year growth of the stock from 
fuels (average of the lower black curve of Figure 5). 

 

Figure 5: From top to bottom, in ppm/(12 months): series of emissions from fossil fuels and cement 
plants (in black, an in-flow), series of ppm increments at MLO (in grey) and in black at bottom the time 
series of atmospheric stock increments dXfossil(t)/dt from fossil fuels and cement plants; the red lines are 
the linear trends in ppm with t=date: emissions from fossil fuels and cement plants = 0.0575 (t – 
1939.45); increases in ppm at MLO = 2.57 – 0.028 (2024 – t); increases in atmospheric stocks 
dXfossil(t)/dt  =0.283 + 0.000013 (t – 1959). 

 

A correlation can be sought only between weakly stationary series; to make a series stationary it 
may be derived with respect to time or its linear trend may be subtracted (Munshi, 2015, 2017; 
Podobnik & Stanley, 2008); Figure 6 shows the non-correlation between the series of the incre-
ments of annual averages of X(t) and the series ffossil(t) after subtraction from each series of its 
linear trend: the coefficient of determination R² is 0.026! 
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Figure 6: Correlation between the year-on-year increments of the annual means at MLO (vertical axis) 
and the annual emissions ffossil(t) (horizontal axis), on series made stationary by subtracting their linear 
trend (detrended series). Coefficient of determination R² = 0.026. 

Munshi (2017) has shown that even with moving averages taken over 1, 2, 3, 4 and 5 years, the 
atmospheric CO2 concentration is unresponsive to fossil fuel emissions. This is supported by the 
autocorrelations of the three series (Figure 7) fossil fuel emissions, increments XMLO(t + 6 months) 
– XMLO(t – 6 months) and inter-tropical sea surface temperatures anomaly. 

 

Figure 7: Autocorrelations of the three time series: fossil fuel emissions (black curve), sea surface 
temperature anomaly of the inter-tropical degassing zone (blue curve) and ppm increments at MLO (red 
curve) X(t + 6 months) – X(t – 6 months). 

The uncertainties of the natural carbon fluxes (Table 1) are of the same order of magnitude as the 
fossil-fuel emissions. This alone should invite caution in drawing firm conclusions about the 



C. Veyres, J-C Maurin, P. Poyet: Revisiting the Carbon Cycle 

 

Science of Climate Change https://scienceofclimatechange.org 

 142 

 

partitioning of sources and sinks. In addition, some budget closures, such as the balanced flux 
diagram in (IPCC, 2013) Fig. 6.1, rely on inferred fluxes that are adjusted to satisfy mass balance. 
It introduces a logical circularity2, since the agreement is partly imposed rather than independently 
demonstrated. Thus, because the IPCC budget relies in part on inferred fluxes that are adjusted to 
close the mass balance, the resulting equilibrium is imposed by construction. As a consequence, 
the reported carbon budget does not independently demonstrate the underlying dynamics. 

5. ARIMA Time Series : X(t), ΔX(t), ffossil(t), SST Anomalies 

5.1 ARIMA Time Series 

Understanding the dynamics of atmospheric CO₂ requires methods capable of distinguishing 
genuine causal structure from spurious correlations in trending data. In climatological and 
geophysical time series, non-stationarity and autocorrelation can easily produce misleading 
statistical relationships if not properly treated. Standard tools from econometrics and signal 
processing, including differencing, autocorrelation modeling, and ARIMA3 (Autoregressive 
Integrated Moving Average) processes, are therefore essential for rigorous analysis of CO₂ 
records. These techniques explicitly account for persistence, serial dependence, and stochastic 
variability, ensuring that apparent associations are not artifacts of trend and memory in the data. 
Techniques for avoiding false correlations and for modeling time series are well known4 e.g. 
(Maddala & Kim, 1998; Wolfram Research, 2012) and (Box et al., 2016). 

Monthly CO₂ ppm series at MLO and SPO are ARIMA, I = 1. Modeling gives for SPO: 

ARIMAProcess[0.109, {0.472, 0.079, 0.020, –0.126, –0.162, –0.177}, 1,{–0.478}, 0.042]. 

The equation for SPO is: 

(1 – L1) (1 – 0.472 L1–0.079 L2–0.02 L3+0.126 L4+0.162 L5+ 0.177 L6) X(n) = 0.109 + e(n) – 
0.478 e(n–1) 

with Lm the shift operator by m months, L(m) X(n) = X(n–m), e(n) a white noise of variance 
0.042 

Modeling gives for MLO: 

ARIMAProcess[0.101, {0.772, –0.155, –0.219, –0.0248, –0.0129, –0.177}, 1, {–0.534}, 0.652] 

Figure 8-a shows in blue and black the X(t) series observed at MLO and SPO and their extensions, 
and as a curiosity, random draws in orange and red starting at the last historical point. Note that 
the increments (1 – L1) X(n) = X(n) – X(n–1) are ARMA stationary series. 

Modeling MLO and SPO data as SARIMA, I=1, with seasonal variations gives for SPO:  
(1–L1) (1–L12) X(n) = 0.00096 + (1 – 0.222 L12) e(n), e(n) of variance 0.057 and a close equivalent 
for MLO: those random walks are plotted in Figure 8-b with blue and black forecasts and 
illustrative, non-significant random draws starting at the last historical point. 

 
2 When a system of fluxes is adjusted so that inflows and outflows balance by definition, the resulting 

“closure” does not constitute independent empirical verification. It reflects a tautology: the conclusion 
(balanced fluxes) is embedded in the premise (fluxes are inferred and adjusted to balance). This corre-
sponds to the classical logical fallacy petitio principii, assuming what one seeks to prove. True empirical 
validation requires that mass balance emerge from independently measured fluxes and stocks, rather than 
from parameters tuned so that the balance necessarily holds.  

3 The ARIMA framework (Box et al., 2016) generalizes autoregressive and moving-average models to 
non-stationary series via differencing. It is a standard tool in econometrics and geophysical data analysis 
to separate signal from trend-driven pseudo-correlation. 

4 An introduction is given here: https://en.wikipedia.org/wiki/Autoregressive_integrated_moving_average 
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Figure 8 a-b: Historical time series, forecasts and illustrative random draws of no predictive value. a) 
left: X(t) series at MLO and SPO as ARIMA I=1; b) right: ditto as SARIMA I=1 with seasonal variations. 

The series of increments X(t + 6 months) – X(t – 6 months) at MLO plotted on Figure 9-a is an 
autoregressive stationary moving average process ARMAProcess[0.214, {0.525, 0.346}, 
{0.255},0.162] that is (1 – 0.525 L1 – 0.346 L2) X(n) = 0.214 + e(n) + 0.255 e(n–1); the blue line 
forecast is the average of historical values; illustrative random draw is in orange. 

Plotted in Figure 9-b are the annual emissions ffossil(t) since 1958; they are an I = 1, 
ARIMAProcess[0.124, {}, 1,{}, 0.0262] with e(n) of variance 0.026, (1– L1) X(n) = 0.124 + e(n); 
plotted are a forecast, illustrative random draws from the last historical point and a logistic 
approximation of the series of emissions. 

 

Figure 9 a-b: Historical time series, forecasts and illustrative random draws of no predictive value. a) 
left: series of the X(t) increments at MLO as ARMA; b) right: series of fossil fuel and cement emissions 
since 1958 (I=1) as ARIMA I=1 and a logistic approximation of the historical series. 

The sea surface temperature (SST) anomaly between 20°S and 20°N (Figure 10-a since 1958 and 
10-b since 1870, blue curve) is, since 1958 an ARMAProcess[–0.0, {0.971}, {–0.072, 0.051}, 
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0.0053] with a strong correlation from one month to the previous month but is not a random walk. 
ATSST(n) = 0.971 ATSST(n–1) + e(n) – 0.072 e(n–1) + 0.051 e(n–2) with e(n) variance 0.0053. 

 

Figure 10 a-b: a) left: ATSST temperature series as ARMA since mid-1958 with its “best forecast” (blue 
line) and illustrative random draws of no predictive value; b) right: ATSST ARMA series since 1870 with 
best forecast (blue line) and illustrative random draws of no predictive value. 

 

These exercises also show that the stationary series of CO2 ppm increments (ARMA Figure 9-a) 
can be correlated with the stationary series of inter-tropical sea surface temperatures (Figure 2 
and Figures 10-a-b) or with the inter-tropical lower troposphere temperature series (Figure 3), but 
not with the ARIMA I=1 series of fuel emissions (Figure 9-b) which must be detrended before a 
correlation with the stationary ARMA ATSST anomaly series can be tested (Figure 6). 

If the ppm increments at MLO were proportional to fossil fuel emissions, which are ARIMA with 
I = 1, then the sum of these increments, i.e. the ppm series, should be ARIMA with I = 2; but it is 
I =1 as seen on Figure 8-a. The Airborne Fraction conjecture is therefore false. 

5.2 Conclusions 

The equations: 

d𝑋୤୭ୱୱ୧୪(𝑡)

d𝑡
+

𝑋୤୭ୱୱ୧୪(𝑡)

5 𝑦𝑟
= 𝑓୤୭ୱୱ୧୪(𝑡)                                                       (8) 

d𝑋୬ୟ୲୳୰ୟ୪(𝑡)

d𝑡
= 3.17 ppm/yrଶ(ATୗୗ୘(𝑡) + 0.25°C)                          (9) 

𝑋(𝑡) = 𝑋୬ୟ୲୳୰ୟ୪(𝑡) + 𝑋୤୭ୱୱ୧୪(𝑡)                                                            (10) 
 

reproduce the values observed at MLO. The computed and observed series since 1870 (the start 
of the temperature series) are plotted Figure 11. Taking into account the surface temperature series 
of the southern seas between 45°S and 60°S improves slightly the restitution of the observations. 

X(t) in the atmosphere is therefore essentially the integral over the time of past inter-tropical 
temperatures, a consequence of these temperatures. Same conclusion was drawn by Salby & 
Harde (2022a). 
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Figure 11: Comparison of MLO observations and of their logistic approximation (red curve) with the 
values (in blue) computed with the inter-tropical temperature series ATSST(t) and with ffossil(t) since 1870. 

 

5.3 Some Misleading Tricks 

5.3.1 Accumulations of Generally Positive Quantities 

Two time series whose terms are accumulations of generally positive quantities always appear 
"visually" well correlated, even if these quantities are random. The effective sample size is 
reduced by the reuse of numbers, since the first number x1 is used n–1 times, x2 is used n–2 
times...and the DF degrees of freedom become meaningless. 

Let’s quote Munshi (2016c): “Therefore although strong correlation and regression coefficients 
can be computed from the time series of cumulative values, these statistics have no interpretation 
because they are illusory." and "Empirical evidence of the causal chain that links fossil fuel 
emissions to rising atmospheric CO2 and a warming trend consists primarily of correlations 
between cumulative values (Kheshgi, 2005) (Canadell, 2007) (Botzen, 2008) (Brovkin, 2004) 
(Meinshausen, 2009) (Matthews, 2009) (Solomon, 2009) (Anderson, 2011) (Arora, 2011) (IPCC, 
2007) (IPCC, 2014). However, this line of evidence is weakened by the spuriousness of 
correlations between cumulative values". 

Cumulative positive quantities can be seen, for example, in Fig. SPM. 10 (IPCC, 2021, p. 28), 
which claims that temperature is proportional to cumulative emissions (the starting point of this 
SPM 10 figure is probably 1876). Figure 12-a shows the HadCRUT4 series of monthly global 
temperature anomalies since 1850 (anomaly, i.e. in deviation from the mean of the same month 
taken over 1850-2025.0) versus cumulative emissions from fuels (horizontal axis), R2 = 0.86. 

This is a delusion: no correlation is possible between the emissions (not their cumulative values) 
and the annual temperature increments plotted in Figure 12-b right, R2 = 0.038! 
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Figure 12 a-b: a) left: On the ordinate, a monthly global temperature anomaly HadCRUT4 since 1850, 
and on the abscissa, cumulative ffossil(t) emissions from oil, coal and gas and cement plants at the date 
of the temperature anomaly; the blue line shows the IPCC formula in Fig. SPM10. AR6 (IPCC, 2021): 
+0.45°C/1000 Gt-CO2 (i.e. +2°C compared with the average over 1850-2024 for a cumulative 1212 Gt-
C); the red line is a linear fit 0.00233 × – 0.315: it is 0°C in 1974.8 for a cumulative 135 Gt-C and +2°C 
for 991 Gt-C; b) right: Increments of the HadCRUT4 annual mean global temperature series (y-axis) 
and yearly emissions (x-axis): R = 0.038, i.e. no correlation. 

 

Note in the IPCC accounting the importance of the LUC use (Land Use Changes), which before 
1955 were far greater than the fossil fuel emissions (Figure 13-a), and of the choice of a starting 
date to give the impression of a "visual correlation": Figure 13-b begins in 1880 and looks better 
than Figure 12-a. Figures 12-a and 13-b are deceptive: a valid correlation can only be sought 
between the increments themselves (i.e. Figure 12-b), not between the cumulative values of the 
increments (Figures 12-a and 13-b)! 

  

Figure 13 a-b: a) left: Comparison of a series of LUC (green curve) with ffossil(t) (bottom black curve) 
before 1955; the top grey curve is the sum of LUC(t) + ffossil(t) used by the IPCC; b) right: As Figure 12-
a but starting in 1880 (to hide the positive temperature anomalies seen at the beginning of the series 
such as +0.07°C in December 1852 on Figure 12-a, and with the addition of LUC to ffossil(t); the red 
linear fit is close to the blue (IPCC, 2021) +0.45°C for cumulative emissions of 1000 Gt-CO2. 
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5.3.2 Abusive Use of Smoothing by Moving Averages 

Two straight lines seem perfectly correlated (but that makes no statistical sense!), hence the use 
of moving averages over several years to give an air of visual verisimilitude to a non-existent 
causality, to find for example in (Hansen et al., 2013) an "Airborne Fraction" of emissions that 
would have remained perpetually in the air and accounted for all the growth in atmospheric CO2 

since pre-industrial times. The effective number of Degrees of Freedom (DF), for a series of 
length n smoothed by a moving window of length w becomes5: 

DF =
𝑛ଶ

(𝑛 − 𝑤 + 1)𝑤
− 𝑘                                                   (11) 

For a 60-year monthly series n = 720 and w = 60 (as often used for the Airborne Fraction), DF = 
11 instead of 718. Beenstock et al. (2012) argued that regressions of global mean temperature on 
the logarithm of anthropogenic forcings lack statistical significance. For a discussion and 
subsequent exchange with Pretis & Hendry (2013), see Beenstock et al. (2013). 

6. Carbon Cycle Calculations with Three Compartments 

6.1 Stocks and Fluxes  

Stocker et al. (2013) i.e. (IPCC, 2013) state that carbon stocks and fluxes are known with 
uncertainties on the order of ~20% or more. Let us assume the following carbon stocks: 
approximately 38,000 Gt-C in the oceans and about 2,400 Gt-C in vegetation and soils in 1995. 
We further assume that the annual fluxes to the atmosphere are proportional to these pools, with 
magnitudes equal to a fraction 1/τoc(t) of the ocean reservoir and 1/τtb of the terrestrial biosphere 
reservoir (i.e. vegetation and soils). To remain consistent with the flux values reported in Fig. 2.1 
of IPCC (1995) AR2, we take τtb = 40 years, since 2400/40 = 60 Gt-C yr−1, and τoc(1995) = 413 
years, since 38000/413 ≈ 92 Gt-C yr−1. 

 

Figure 14: Diagram of exchanges between reservoirs with four flows expressed as a fraction of the stock 
of the transferring reservoir. 

 

 
5 The main term n2 / [(n - w + 1) w] gives the effective number of independent values after moving average 

smoothing. The “– k” corrects for parameters estimated from the series (typically k = 1 or 2). Thus k is 
the number of fitted parameters (e.g. mean or trend). 
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Furthermore, to align with Haverd et al. (2020), we assume that annual fluxes from the 
atmosphere to the ocean and to vegetation correspond to 11.4% and 8.6% of the atmospheric 
carbon stock, respectively (see observations in Figure 17). 

Hence three coupled differential equations with given initial values X(t0), Y(t0), Z(t0): 

                               𝑋ᇱ(௧) =
−𝑋(𝑡)

𝜏ୟ୲୫(𝑡)
+

𝑌(𝑡)

𝜏୲ୠ(𝑡)
+

𝑍(𝑡)

𝜏୭ୡ(𝑡)
+ 𝑓୤୭ୱୱ୧୪(𝑡)

𝑌ᇱ(௧) =
−𝑌(𝑡)

𝜏୲ୠ(𝑡)
+ 0.086 𝑋(𝑡)

𝑍ᇱ(௧) =
−𝑍(𝑡)

𝜏୭ୡ(𝑡)
+ 0.114 𝑋(𝑡)

                                (12) 

 
Figure 15: Exchanges governed by the three coupled differential equations (12), corresponding to the 
diagram in Figure 14. All notation is defined in Appendix A. 

 
The exchanges of 275 Gt-C/year between the surface ocean and the deep oceans quoted in Sec. 2 
above mean that the well mixed first 100 meters of the ocean is not separated from the rest of the 
ocean. Figure 16 shows what happens to a unit pulse of carbon into air at time t0 = 0 (ffossil(t) = 0 
for t > 0, X(0) = 1, Y(0) = Z(0) = 0) for τoc(t) = 360 years: the black curve decreases as exp(–t/atm) 
during the first 10 years and tends towards 2.1% after 200 years, as the unit pulse of carbon is 
finally distributed between the three compartments in proportion to their masses, i.e. for the 
atmosphere: 875 / (875 + 2500 + 38000) = 2.1%. The black curve represents the mass of carbon 
that remains in the atmosphere, or returns to it after temporary residence in the other two 
reservoirs. It is well approximated by the impulse response6: 

F1(t) = 0.021 + 0.928 exp(–t /4.73 yr) + 0.0416 exp(–t /70.46 yr) 

with F1(30) = 5%, F1(100) = 3.1%. F1(t) is very different from Bern's impulse response of (IPCC, 
2007) i.e. AR4 WG1 p. 213 note a) 

 
6 The black curve of Figure 16 takes into account anthropogenic CO2 molecules that return to the atmos-

phere (“zombie” molecules after passing through the ocean and vegetation /soil compartments). If we did 
not take into account this return of ‘zombie’ molecules, we would have a simple decay in exp (-t/5yr). 
During the first 10 years, this return of ‘zombie’ molecules is negligible: we are close to exp(-t/5yr). F1(t) 
approximates this behavior: 4.73 years mainly concerns non-zombie molecules and 70.46 years concerns 
‘zombie’ molecules (a mixture of τtb =40 years for vegetation / soil and τoc= 360 years for the ocean). 
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FB(t) = 0.217 + 0.186 exp(–t/1.186yr) + 0.338 exp(–t/18.57yr) + 0.259 exp(–t/172.9yr) 

(red curve on Figure 16). The "vegetation & soils" compartment, shown in green on Figure 16, 
rapidly absorbs a part of the carbon pulse from the air, peaks at 34% at t = 14.4 years, before 
releasing its carbon: it still contains 9.2% of the initial pulse at t = 200 years and 6% in the long 
term. The “ocean” compartment, shown in blue in Figure 16, absorbs part of the carbon pulse 
present in the air even faster, then absorbs the excess carbon from vegetation & soils: it contains 
92% of the carbon in the long term. 

 

Figure 16: Distribution between the three compartments of a unit pulse of carbon into the atmosphere 
at time t = 0. The black F1(t) curve and the grey 2.1% + exp(–t/τatm) curve differ by at most 2.7%. 

 
The net flux absorbed by vegetation, its Net Primary Productivity NPP(t) net of respiration is 
about GPP/2 (see Table 1); in Figure 17, the green curve from (Haverd et al., 2020) is the GPP 
over 1900 – 2016 extended with the indications of (Lai et al., 2024); this GPP is close to twice 
the 8.6% of X(t) at MLO extended before 1959 by XMLOlogis(t) of equation (6). This justifies the 
parameters used in Figure 14:  0,086 X(t) =  absorbveg(t)  and (0,2 – 0,086) X(t) = 0,0114 X(t) = 
absorboce (t). 

 
Figure 17: The green curve is from (Haverd et al. 2020) and (Lai et al., 2024) the Global Gross Primary 
Productivity GPP of the vegetation in Gt-C/yr; the black curve is 2×8.6% × 2.12 of the ppm logistic 
XMLOlogis(t), the blue curve is 2×8.6% of the air carbon mass deduced from the series ffossil(t) and ATSST(t) 
(the inter-tropical sea surface temperatures anomaly) (plotted in ppm on Figure 11) and the grey curve 
is 2×8.6% of the X(t) series in Gt-C based on XMLO(t). 
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6.2 Computation of Stocks and Fluxes 

The three differential equations (12) of Subsec. 6.1 link the stocks of carbon in the air X(t), in 
vegetation & soils Y(t), and in the ocean Z(t): 
X(t) is computed (see Subsec. 5.2) from the observed time series ATSST(t) for Xnatural(t) and ffossil(t) 
for Xfossil(t), 
Y(t) is deduced from dY(t)/dt + Y(t)/τtb = NPP(t) = GPP(t) /2 with Haverd et al.’s (2020) GPP(t), 
Z(t) / τoc(t) is X'(t) + X(t)/τatm – Y(t)/τtb – ffossil(t). 

   
Figure 18 a-b: a) left: Y(t) stock in vegetation and soil, the calculation uses the integral of GPP/2 
according to Haverd et al. (2020) - see Figure 17; b) right: ocean degassing flux varying according to 
Z(t)/τoc(t). 

Cumulative ocean degassing over 1900-2025.0 is 10,350 Gt-C. 
For vegetation and soils, Figure 18-a shows, with the GPP of Haverd et al. (2020) and Lai et al. 
(2024) plotted in Figure 17, Y(1900) = 2088 Gt-C and Y(2025) =2630 Gt-C.  

IPCC’s figures are: 

 (AR2, Fig. 2.1) Y(1989) = 2190 Gt-C with a Global NPP of 61 Gt-C/yr,  
 (AR5, Fig. 7.3.5) Y(1997) = 2261 Gt-C, GPP(1997) = 122 Gt-C/yr, Y(pre-industrial) = 

2300 Gt-C and GPP(preindustrial) = 120 Gt-C/yr 
 (AR6, Fig. 5.12) Y(2013) = 2150 Gt-C, GPP(2013) = 142 Gt-C/yr, GPP (pre-industrial) 

= 113 Gt-C/yr. 

Reducing the mean residence time in vegetation and soils from 40 years to 30 years reduces the 
Y(2024) stock to 2300 Gt-C but has little effect on oceanic degassing, since Y(1900) goes from 
40 times to 30 times the NPP(1900): Y(2024) – Y(1900) changes little. 

6.3 Changes of the Stocks 

Figure 19 shows the variations in the three carbon stocks and cumulative emissions between 1900 
and 2025. The increases in atmospheric carbon (+297 Gt-C or +140 ppm) and in vegetation and 
soils (+542 Gt-C) result from the net contributions of the oceanic stock (−359 Gt-C) and fossil 
fuels (−480 Gt-C, of which approximately 50 Gt-C remain in the atmosphere, with the rest 
absorbed by vegetation and the oceans). 

Since 1900, fossil fuel combustion has contributed a cumulative total of 480 Gt-C to stocks X, Y, 
and Z. Between 1900 and 2025, the inter-tropical ocean has released approximately 10,350 Gt-C 
(an average of 83 Gt-C yr⁻¹ over 125 years, according to Figure 18-b, right panel). However, the 
high-latitude ocean has absorbed 9,991 Gt-C, resulting in a net loss of 359 Gt-C from the ocean 
to the atmosphere and to vegetation/soils. Over the same period, the atmosphere gained 297 GtC 
and vegetation/soils gained 542 Gt-C. 
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In the absence of fossil fuel emissions (cumulative = 0 Gt-C), the atmospheric partial pressure of 
CO₂ would have increased more slowly, reaching 395 ppm instead of 425 ppm. This lower 
pressure would have promoted additional degassing in the inter-tropical ocean and reduced CO₂ 
absorption at high latitudes. In that case, the ocean would exhibit a net loss of 664 Gt-C (10,504 
Gt-C degassed minus 9,840 Gt-C absorbed) to the atmosphere and vegetation/soils. The 
atmosphere would then have gained only 233 Gt-C and vegetation/soils only 431 Gt-C. 

 

Figure 19: Variations in Gt-C over 1900-2025 in atmospheric stocks X(t) (grey), vegetation and soil 
stocks Y(t) (green) and cumulative emissions since 1900 (black); in blue, the change of the oceanic stock 
Z(t) computed as the integral over time of – Z(t)/τoc(t) + 0.114 X(t). 

6.4 A Glimpse at Decarbonization Policies in the EU-27 

The mean over 1980-2023 of the cost of weather-related catastrophes in EU-27 is € 16.8Bn/yr 
about 0.1% of the Gross Domestic Product (GDP) and the maximum over those 44 years has been 
€ 63Bn/yr (EEA, 2024). 

The EU “Fit For 55”, –55% in 2030 with respect to 1990 emissions of 4.73 Gt-CO2/yr or 0.61 
ppm/yr, aims at 2030 emissions of 0.27 ppm/yr with a further decline to 0 in 2050. The yearly 
cost of that policy is said to be over the next decades 5% to 10% of a 2024 EU GDP which is 
about € 17,900 Bn/yr, i.e. (≈1000 times the average cost of said catastrophes!). 

dXfossil(t)/dt = ffossil(t) – Xfossil(t)/5 shows that the stock Xfossil(2035) from EU emissions would be 
reduced from 1.6 ppm, if emissions were kept at their 2024 level, to 1.14 ppm that is minus 0.46 
ppm. 0.46 ppm is about 5% of the seasonal increase of 8.6 ppm between the dates 2023.73 (end 
September) (XMLO = 418.4 ppm) and 2024.42 (end April) (XMLO = 427 ppm) and little more than 
one thousandth of XMLO. Preventive measures (dams and retention basins, dykes, reservoirs, 
irrigation) account for less than one-thousandth of GDP per year, even in the Netherlands, and 
significantly reduce the impact of catastrophic floods. Mobile barriers on the Thames (closed 221 
times since 1982) and on the Venice lagoon (78 barriers in service by 2020, raised about 28 times 
a year against the highest tides) effectively protect these cities. 

7. On 13C in the Atmosphere 

The ratios of 13C and 12C isotopes of CO2 in the air, observed continuously since 1980 at the 
Mauna Loa and at the South Pole observatories (at altitudes 2.8 km and 3.4 km) and far from any 
vegetation, confirm that only a few percent of carbon dioxide in the atmosphere come from fossil 
fuels. The marker δ13C in units per mil (denoted ‰): 
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𝛿ଵଷ𝐶 = ൭
൫ 𝐶ଵଷ 𝐶ଵଶൗ ൯

ୱୟ୫୮୪ୣ     

൫ 𝐶ଵଷ 𝐶ଵଶൗ ൯
୰ୣ୤ୣ୰ୣ୬ୡୣ

 − 1൱ 𝑥1000 ‰                                       (13) 

is, for a mixture, approximately linear with respect to the quantities entering the mixture. Indeed 
for a mixture X = X'+ X", with markers δ, δ' and δ" and A = 1/ (13C/12C)reference = 1 / 0.0112372 for 
the VPDB reference, δ = A X13/X12 – 1, δ = (X' δ' + X" δ" + X δ' δ"/(A+1)) / (X + (X' δ "+ X" δ') / 
(A+1)) or practically (X' δ' + X" δ")/X see note7. The δ13C carbons of the fuels gas oil and coal are 
about –45, –28, –24.5 per mil with variations from deposit to deposit (Hu et al., 2021; Masood et 
al., 2022; Suto & Kawashima, 2016). The δ13C of the mixture is slightly reduced by the flow from 
cement plants, and a small proportion of the hydrocarbons is used to make plastics (Figure 20-b).  

 

Figure 20 a-b:  a) left: Carbon (millions of tons) contained in gas, oil, coal and cement production, and 
the fraction used in energy production (Statistical review of World Energy Data 2023); b) right: 
Production of plastics in Mt/year past and extrapolated. 

Figure 21 shows estimates of the δ13Cfossil(t). Over 45 years, the stock of fossil fuels has risen from 
3.2% to 5.5% of the CO2 in the air. We provide the computation of the instantaneous atmospheric 
stock of CO₂ originating from fossil sources (coal, oil, gas, cement) at a given time t. Each year’s 
(or month’s) emissions contribute to the current stock, but their influence decays exponentially 
with time due to natural absorption. For coal, the stock Xcoal(t) in the atmosphere at time t is the 
average of the previous emissions fcoal(m) weighted by e−(t−m)/5 yr. The variable m represents the 
emission year (or time index) before t, that is, the time at which each individual emission fcoal(m) 
occurred. So: 

 t = current year (or time of evaluation), e.g. 2024.05 

 m = past year (e.g. 1900, 1950, 2000, … up to t) 

 fcoal(m) = fossil CO₂ emissions from coal at time m 

The exponential term e−(t−m)/5 yr is the weight expressing how much of the emission at time m still 
remains in the atmosphere at time t, assuming a 5-year e-folding decay time. The atmospheric 

 
7 The marker δ¹³C, expressed in per mil (‰), quantifies the relative abundance of ¹³C to ¹²C compared to a 

standard (VPDB). For mixtures, δ behaves approximately linearly because the ¹³C/¹²C ratio of the com-
bined reservoir is a weighted average of the isotopic ratios of the individual components. The exact ex-
pression follows from mass balance on ¹³C and ¹²C, but since δ values are small (|δ| ≪ 1), the higher-
order terms in δ′δ″/(A+1) are negligible, leading to the practical linear approximation (X' δ' + X" δ")/X. 
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stock Xcoal(t) is obtained by summing all past emissions fcoal(m), each diminished by an exponential 
factor that accounts for how much of it has been reabsorbed since it was emitted. Then, by 
combining the stocks from coal, oil, and gas, each with its own δ¹³C signature, the weighted mean 
isotope ratio is: 

𝛿ଵଷ𝐶୤୭ୱୱ୧୪(𝑡) =
∑ 𝛿ଵଷ 𝐶௜𝑋௜(𝑡)

∑ 𝑋௜ (𝑡)
                                                (14) 

The calculation for oil, gas and cement plants, i.e. the sum of stocks weighted by their own marker, 
for example δ13C = {–46, –28, –24.5} for gas, oil and coal divided by the sum of stocks gives: 
 

δ13Cstock fossil(1980.05) = –27.9 ‰ and δ13Cstock fossil(2024.05) = –29.4 ‰. 

 
                

   
         

               
            

 
The δ13C stock natural(t) of the stock from natural out-gassing (which includes a small fraction of fossil 
carbon “zombie” recycled after absorption and out-gassing) is for instance: 

δ13Cstock natural(1980.05) = –6.84‰ and δ13Cstock natural(2024.05) = –7.5‰ as 
 at date 1980, 338 ppm (–7.52‰) = 11 ppm (–27.9‰) + 327 ppm (–6.84‰) 
 at date 2024, 423 ppm (–8.68‰) = 22.8 ppm (–29.4‰) + 400 ppm (–7.5‰). 

 
Figure 22-a shows: 

1. in black, the δ13C measured at Mauna Loa since 1980 and its 12-month moving average,  
2. in grey, the δ13Cstock natural that evolves slowly with the return to the atmosphere of 

“zombie” fossil fuel carbon absorbed by vegetation or oceans decades earlier, and its 
12-month moving average. 

The stock from natural out-gassing (grey curve in Figure 22-a) has the δ13C signature of the 
ambient air some 60 years earlier, reflecting the average carbon transit times between absorption 
and out-gassing through the oceans and through vegetation and soils. 

In the oceans, a relatively rapid movement on isopycnic surfaces close to the surface near 50°N 
and 1000 m deep in the inter-tropical zone could explain a transit in a century or less. 

The Impulse Responses (Figure 16) give a sum of the carbon from fuels still in the atmosphere 
(for a 5-year lifetime) and of the fossil fuel “zombies” absorbed long ago and returned to air by 
out-gassing after sojourns in oceans and soils; subtracting all "fossil" carbons leaves a δ13C 
between –6.6‰ (in 1980) and –7.1‰ (in 2024). 

Year 


C
‰

 

Figure 21: δ13C estimates for the emissions from fuels and cement plants. Office of Scientific and Tech- 
nical Information (OSTI), (https://data.ess-dive.lbl.gov/view/doi:10.3334/CDIAC/FFE.DB1013.2017),  
U.S. Department of Energy. Black curve is the "OSTI db1013 global", blue curve corresponds to the 
"computed energy and cements {-45, -28, -24.5}" and red curve is for "all gas and oil and coal". 

https://data.ess-dive.lbl.gov/view/doi:10.3334/CDIAC/FFE.DB1013.2017
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Figure 22 a-b: a) left: Evolution of the atmospheric δ13C (MLO observations in black) and in grey the 
δ13C of the stock from natural out-gassing that is without the fossil fuels carbon still in the air for a 
lifetime of 5 years and their 12-month moving averages; b) right: Comparison of δ13C observed at Alert 
(Alaska, 82°30'N & 62°21'W, 817 km from the North Pole), at Mauna Loa (19°28'N and 155°36'W, 3397 
m) and at the South Pole (2937 m) with a 12-month moving average smoothing; the blue dashed line is 
the inter-tropical sea surface temperature anomaly shifted in ordinates by –8.6°C. 

 
Figure 23 compares the increments of  δ13Cstocknatural(t) and the sea surface temperatures of the 
inter-tropical zone: the δ13C of CO2 degassed by the ocean is, according to (Quay et al., 2003, p. 
4-12) Fig. 8 or (Roy-Barman & Jeandel, 2016, p. 110) Fig. 3.11, about –1.5‰ more negative than 
the δ13C of air: this may explain the peaks of negative values of the increments during times of 
strong out-gassing (Figure 2) that are the risers of the stairs on Figure 22. 

 
Figure 23: In grey, increments of δ13Cstock natural(t) in ‰ (12-month increments, centered in the middle of 
the 12 months to reduce the seasonal fluctuations) and in blue, 0.3 times the opposite of the inter-tropical 
sea surface temperature anomaly after subtracting its linear trend. 

Figure 24 shows (thick grey line at bottom) the δ13Cstock natural(t) (grey curve at top of Figure 22-a) 
shifted by +33.6): it decreases from August to May while MLO ppm (divided by 14, black curve) 
increase almost in phase with the mean inter-tropical SST (blue curve). 

Koutsoyiannis (2024b) uses the Keeling plot of δ13C(t) as a function of 1/ X(t); adding to X(t0) of 
marker δ13C0 a quantity X(t) – X(t0) of marker δ13CI gives to X(t) the isotopic signature: 

𝛿ଵଷ𝐶(𝑡) = 𝛿ଵଷ𝐶ூ + (𝛿ଵଷ𝐶଴ − 𝛿ଵଷ𝐶ூ)
𝑋(𝑡଴)

𝑋(𝑡)
                                    (15) 
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Figure 24: Trends over 2010-2017 of the mean SST sea surface temperatures (in °C) between 20°S and 
20°N (blue curve), Xnatural(t)/14 at MLO (black curve) and 33.6 + δ13Cnatural(t) (thick grey line). 

Regression of δ13C on the observations of 1/X(t) over a time interval gives the δ13CI as the y-
intercept of the graph. For seasonal variations he finds δ13CD = −27.6‰ during the two months 
with the highest photosynthesis (an atmospheric CO2 decay phase) and various values of δ13CU 
during the two months of strongest atmospheric CO2 growth phase, and for long-term variations 
δ13CI = −13.2‰ even for reconstructions of δ13C(t) going back to year 1520 (Böhm et al., 2002). 

8. On Carbon in Seawater 

An outflow from the ocean of 100 Gt-C/year over the 20°S-20°N zone (34% of the earth's sur-
face), 75% oceanic, i.e. 130 M km², corresponds to an average flux of 64 moles-C/year/m². For 
seawater at 2 100 µmole-C/kg, an up-welling of 30 m/year is required, and three times more if 
only a third of the carbon that rises is degassed to the atmosphere. As seen in Sec. 2, and using 
equations (8) and (9) in Subsec. 5.2 these relations show that oceanic degassing (Figure 18-b) 
driven by ATSST(t) has provided the bulk of the growth in the atmospheric and vegetation and soil 
stocks: in 1960, oceanic degassing was 32 times the flux from “fossil fuels”; since 2010, it has 
been 11 times greater. 

For the IPCC, changes in ocean degassing are absolutely taboo because it invalidates representa-
tions such as (IPCC, 2018, p. 105), Fig. 2.3: “Temperature changes from 1850-1900 versus cu-
mulative CO2 emissions since 1st January 1876” where cumulative human emissions are claimed 
to have caused: 

1. all the increase in CO2 and thus,  

2. all the warming since 1876: "Solid lines with dots reproduce the globally averaged near-
surface air temperature response to cumulative CO2 emissions plus non-CO2 forcers as 
assessed in Figure SPM 10 of WGI AR5." 

The reality (Sec. 2 and 3 above) is that ATSST increased from 0.12 °C in 1959 to 0.97 °C in 2024 
and accounts for 83% (+89 ppm) of the total increase (+107 ppm) in atmospheric CO₂ over that 
period. Moreover, the fraction of fuel-related emissions still remaining in the air (about 23 ppm 
out of 425 ppm at the end of 2024) cannot have any climatic effect. This negligible contribution 
of not more than 5.4% to the atmospheric CO2 concentration is in full agreement with an inde-
pendent line of reasoning and based on a residence (or absorption) time of τ = 3.8 yr (see: Harde, 
2025, Sec. 4, last paragraph).  

8.1 Reminders 

[x] denotes the number of moles of compound x per kilogram of sea water. 
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The ocean is by far the main reservoir of circulating carbon, potentially inexhaustible if we con-
sider the calcium carbonate in marine sediments. Seawater has everywhere almost the same com-
position (Dittmar principle, 1884) and contains in mole/kg: H2O: 53.56, Na+: 0.4685, Mg2+: 
0.05308, Ca2+: 0.01028, K+: 0.01021, Sr2+: 0.00009, B: 0.00042, Cl-: 0.54591, SO4

2- : 0.02823, 
CO3

2- & HCO3
-: 0.002, Br-: 0.000842, F-: 0.00007, i.e. 0.60561 moles per kg of positive charges 

excluding H+ and 0.603282 moles of negative charges excluding carbonates, borates and OH. 

The difference 605610 – 603282 = 2328 micro-moles/kg  known as total alkalinity or TAlk, is 
also identical to [HCO3

-] + 2 [CO3
2-] + [B(OH)4 

-] + [OH-] – [H+].  

Carbonate equilibria in seawater (Copin-Montégut, 1996; Dickson, 2010; Dickson et al., 2007) 
are described by five equilibrium constants that are functions of salinity and temperature; the 
fugacity fCO2 of CO2 in the gas phase is derived as per (Zeebe & Wolf-Gladrow, 2001): 

𝑓஼ைమ
=

[𝐶𝑂ଶ*]

𝑘଴
                                                            (16) 

with: 

 [CO₂*] = the equilibrium concentration of dissolved CO₂(aq) in water, often in mol/kg or 
mol/l. The *8 distinguishes it from total dissolved inorganic carbon (DIC = CO₂ + HCO₃⁻ 
+ CO₃²⁻). 

 k0 = the Henry’s law solubility constant for CO₂ (temperature- and salinity-dependent). 

Let CO₂* (a.k.a. H2CO3
*) denote dissolved molecular CO₂ plus carbonic acid: 

 𝐶𝑂ଶ
* ≡ 𝐶𝑂ଶ(𝑎𝑞) + 𝐻ଶ𝐶𝑂ଷ                                                  (17) 

Stoichiometric (salinity-dependent) equilibrium constants: 

 𝐾ଵ
*, 𝐾ଶ

*, 𝐾௕
*, 𝐾௪often in place of  𝑘ுమை                                       (18) 

depend on T, S, and P; the asterisk distinguishes them from thermodynamic K’s based on activi-
ties, while Kw instead of kH2O avoids confusion with water itself, either one or the other can be 
used. These constants are defined by the following relations (19): 

 

 [𝐻𝐶𝑂ଷ
- ] =

௄భ
*[஼ைమ

*]

   [ு+]

    [𝐶𝑂ଷ
2-] =

௄మ
*[ு஼ைయ

- ]

     [ு+]

 [𝐵(𝑂𝐻)ସ
- ] =

௄್
*[஻(ைு)య]

      [ு+]

 [𝐻+] =
௄ೢ

[ைு-]

                                              (19) 

The pK notation is also often used: 

 𝑝𝐾 = −logଵ଴(𝐾)e.g.,𝑝𝐾ଵ
* = 𝑝𝐻 − logଵ଴൫[𝐻𝐶𝑂ଷ

- ] [⁄ 𝐶𝑂ଶ
*]൯                   (20) 

With the notations salinity S, and absolute temperature T, one can define Kw (S,T) i.e. the ionic 
product of water in seawater at a given salinity and temperature, with BT(S), i.e. a salinity-depend-
ent correction term and with Kw

0 (T) the ionic product in pure water at the given temperature: 

 𝐾௪(𝑆, 𝑇) = [𝐻+][𝑂𝐻-] = 𝐾௪
଴ (𝑇) + 𝐵்(𝑆)                                (21) 

BT(S) stands for the total boron concentration in seawater that is, the sum of all boron species 
(mostly boric acid B(OH)3 and borate ion B(OH)4

−). It is proportional to salinity, because boron 

 
8 The * is a conventional marker in geochemistry/ocean chemistry indicating the aqueous concentration of 

CO₂ in equilibrium with the atmosphere, not the whole carbonate system. [CO2
∗] denotes the sum of 

dissolved molecular CO₂ and carbonic acid (H₂CO₃). 
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in seawater behaves conservatively (it scales linearly with the amount of dissolved salts) as de-
fined by (Millero, 1995) as BT(S) = 1.188 × 10-5 S mol kg−1 or at typical ocean salinity with S = 
35 kg/m3, one gets BT(S) = 1.188 × 10-5 × 35 = 4.16 × 10-4 mol kg−1. 

Once this is defined, the following relations apply with the notations “ln” as natural logarithm,  
S = s kg/m3 as salinity and T =  K as temperature with s and  as their numerical values: 

  ln(k0[T, S]) = –60.240 + 93.451 (100/) + 23.358 ln( /100) +  
  s [0.023  0.024 ( /100) + 0.0047 ( /100) 2] 

  ln(kb[T, S]) =  (–8966.9 – 2890.53 s0.5 – 77.942 s + 1.728 s1.5 – 0.0996 s2) / +148.025 +  
             137.194 s0.5 + 1.621 s + (–24.434 – 25.085 s0.5 – 0.247 s)·ln() + 0.053 s0.5·  

  ln(k1[T, S]) =  2.837 – 2307.127/ – 1.553 ln() – (0.20760841 + 4.0484/) s0.5 + 
              0.085 s – 0.007 s1.5 + ln(1 – 0.001 s) 

  ln(k2[T, S]) = –9.227 – 3351.611/ – 0.201 ln() – (0.107 + 23.972/) s0.5 +  
             0.113 s – 0.008 s1.5 + ln(1 – 0.001 s) 
  ln(kH2o[T, S]) = 148.965 –13847.26/ – 23.652 ln() +  
  (–5.977 + 118.67/ + 1.049 ln()) s0.5 – 0.016 s 

Same relations in (Dickson, 2010; Dickson et al., 2007), who use both decimal logarithms and 
Napierian logarithms.   

DIC refers to dissolved inorganic carbon, DIC = [CO2] + [HCO3
-] + [CO3

2-] and TAlk is Total 
Alkalinity, the difference between the total charges of the major ions of dissolved salts excluding 
carbonates and borates, TAlk = [HCO3

-] + 2 [CO3
2-] + [B(OH)4 

-] + [OH-] – [ H+]. 

Assuming that total boron [B(OH)3] + [B(OH)4
- ] is a fixed fraction BT of salinity S, we get  

[B(OH)4 
-] = BT[S] kb / (kb + [H+])·  x = [OH-] is the solution close to 10-6 of the following equation 

(see Appendix B): 

𝑇𝐴𝑙𝑘 =
൫𝑥 𝑘ଵ 𝐾ுమ଴⁄ + 2𝑥ଶ𝑘ଵ 𝑘ଶ 𝐾ுమ଴

ଶ⁄ ൯𝐷𝐼𝐶

1 + 𝑥 𝑘ଵ 𝐾ுమ଴⁄ + 𝑥ଶ𝑘ଵ 𝑘ଶ 𝐾ுమ଴
ଶ⁄

+ 𝐵்(𝑆)
𝑥𝑘௕

𝐾ுమ଴ + 𝑥𝑘௕
 −  

𝐾ுమ଴

𝑥
 +  𝑥          (22) 

Figure 25 shows the temperature ranges corresponding to absorption (partial pressure of CO2 in 
seawater less than say 425 µatm) and the temperature ranges for degassing, for example at more 
than 425 µatm. The dashed lines plot the simple approximation: 

pCO2sea water(µatm ) = 400 µatm (/ 299)12.5 (DIC µmole/kg / 2000)10.4  (2328/ TAlk µmole/kg)10.3 

Seawater temperatures range from 32°C in some inter tropical zones to –1.5°C in salty waters at 
the edge of the pack ice (the global average of ocean surface temperatures oscillates between 290 
K and 293 K, depending on the season). 

With DIC and TAlk in µmol/kg and T in Kelvin, the pH is approximately given by this linear 
approximation (the regression coefficients therefore carry the corresponding inverse units so that 
the resulting pH remains dimensionless): 7.85 – 1.95 × 10-3 (DIC – 2100) + 1.87 × 10-3 (TAlk – 
2328) – 1.59 × 10-2 (T – 299); +1°K on T or +8 µmol/kg on the DIC have about the same effect: 
+18 µatm on the sea water partial pressure and –0.016 on the pH. Seawater temperatures over the 
Great Barrier Reef range from 24°C in winter to 30°C in summer. 

Takahashi et al.’s (1993) formula (23) expresses the growth of pCO2seawater with temperature: 

𝑝𝐶𝑂ଶ(𝑇)

𝑝𝐶𝑂ଶ(𝑇୰ୣ୤)
= exp [0.043(𝑇 − 𝑇୰ୣ୤)]                                  (23) 

It is very close to the expression in T12.5 (Figure 26). 
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Figure 25: Calculation according to (Copin-Montégut, 1996) of the partial pressure of CO2 in seawater 
for various values of DIC, TAlk and T(K) at the surface; the dashed lines show the approximation  400 
(T /299)12.5   (DIC / 2000)10.4  (2328 / TAlk)10.3   with DIC μmol/kg and salinity S=35 g/l. 

 
Figure 26: Ratio of the CO2 partial pressures in seawater at temperature T to the  partial pressure at 
273.15 K: expressions in T12.5 and of Takahashi et al. (1993). 

 
The flux of carbon dioxide F (in mol m⁻² s⁻¹ or mol m⁻² yr⁻¹)  between the surface of the ocean 
and the air derives from the difference in partial pressures (Wanninkhof et al., 2013; Wanninkhof 
& McGillis, 1999) and is: 

 𝐹 = 𝑘 · 𝐾଴൫𝑝𝐶𝑂ଶ
ୱୣୟ୵ୟ୲ୣ୰ − 𝑝𝐶𝑂ଶ

ୟ୧୰൯                                          (24) 

with k= 0.251 (Sc/660)-0.5 <U2> in m s⁻¹ and K0 (in mol m⁻³ Pa⁻¹ or mol m⁻³ µatm⁻¹) is the CO₂ 
solubility in seawater (Henry’s law constant) linking partial pressure to dissolved concentration. 
It is weakly dependent on salinity. Sc(t) is the Schmidt number:  

Sc(T) = 2073.1 – 125.62 T + 3.6276 T2 – 0.043219 T3 

where T is the seawater temperature in °C, as used in the standard Schmidt number parameteriza-
tions (e.g., Wanninkhof 1992). The factor (Sc/660)-0.5, where 660 is the Schmidt number of CO2 
at 20 °C, increases from 0.54 to 1.0 and 1.37 as T increases from –1.5°C to +20°C and +32°C. 
<U2> is the second-order moment of wind speed; according to Fig. 5 of Wanninkhof et al. (2013) 
it ranges from 30 m²/s² near the equator to 100 m²/s² at 50°N and perhaps 120 m²/s² or even 150 
m²/s² at 50°S. Maps of CO2 partial pressures in air and in surface water are shown in (Barry 2010). 
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A temperature change of +1°C increases partial pressure by 4.2% at 300 K (by 4.7% at 273 K): a 
difference (pCO2water – pCO2air) of (500 µatm – 420 µatm) becomes (521 µatm – 420 µatm) or +26% 
on the degassing, whereas a difference (430 µatm – 420 µatm) becomes (438 µatm – 420 µatm) 
with +80% on the degassing. The great variability of wind speed and of surface temperature, and 
intermittent oceanic eddies of small dimensions (km) that mix the water of the different layers, 
make it difficult to estimate fluxes. 

8.2 The Depth of the Layer at 2250 µmol / kg is Probably Variable 

Many articles consider the boundary layer between water and air, the last hundred microns or 
centimeters [Bolin, 1960] or meters with many oceanographic measurements. But the degassed 
flow is determined by the difference between the DIC 100 m below the surface and that at the 
surface which is in quasi-equilibrium with the air. 

The DIC at a depth of 100 m in the Atlantic, for example, is 2250 µmol/kg between 15°S and 
15°N, and 2100 µmol/kg near 30°S and 40°N (Millero, 2007). At the surface, outgassing and 
absorption fluxes reduce the DIC to some 2000 µmol/kg (blue and orange curves Figure 25). 

Measurements at the surface of the seas show a considerable variability in pCO2 sea water with mean 
annual values ranging from 250 µatm to 490 µatm depending on the site (air at MLO was then 
around 370 ppm), a seasonal amplitude of 60 µatm to 337 µatm near the coast, of 8 µatm to 71 
µatm offshore and of 11 µatm to 178 µatm in coral reef areas (Sutton et al., 2019). 

A very schematic division of the surface ocean into five geographical zones, the inter-tropical 
zone which degasses, two intermediate zones in equilibrium with the air and, finally, two zones 
closer to the poles which absorb CO2 from the air, suggests that absorption depends on the tem-
perature ratio of the last two zones: if pCO2 sea water = pCO2air at 35°N, pCO2air – pCO2sea water at 50°N will 
be pCO2air (1 – (T(50°N) / T(35°N))12,5), for example this difference is: 

pCO2air (1 – ((273.15 + 5) / (273.15 + 20))12,5) = 0.48 pCO2air. 

Depending on the strength of the carbon up-welling, the position of the layer at 2250 µmol/kg 
may be more or less close to the surface; it could have been near the surface during geological 
epochs with 1500 ppm or more in the air. 

8.3 CO₂ Partial Pressures: No Static Air–Sea Equilibrium  

For {Talk = 2300 µmol /kg, S = 35 g/l} a static equilibrium with air at 400 ppm would require: 

 at 0°C: DIC = 2184 µmol/kg or at 10°C: 2100 µmol/kg, while the observed DIC is 1950 
to 2000 µmol/kg.  

 at 30°C: DIC = 1939 µmol/kg, while the observed DIC is 2100 to 2000 µmol/kg in the 
surface waters feeding the inter-tropical out-gassing. 

There can therefore be no static equilibrium between the surface ocean and the air; the permanent 
flows ocean to air in the tropics and air to ocean at mid and high latitudes, modulated by the ocean 
surface temperatures, are of the order of 100 Gt-C/year (Figure 18-b), extending the obduction 
and subduction quoted in Sec. 2. AR6 Fig. 5.12 of Masson-Delmotte et al. (2021) underestimates 
this flux at 80 Gt-C/year. 

9. Insolation Controls Ocean Heat and Surface Temperatures  

The heat capacity per m² of the first 300 m or 700 m of ocean is 120 or 280 times that of the entire 
air column above. Air can therefore hardly "warm the ocean". Donohoe et al. (2014) admit: "cli-
mate models forced with CO2 reveal that global energy accumulation is, instead, primarily caused 
by an increase in absorbed solar radiation (ASR)". Indeed, thermal infrared emitted by the air is 
absorbed by a few tens of microns of liquid water and if its balance with thermal infrared emitted 
by the surface is positive, it contributes to evaporation. 
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Figure 27 a-b: a) left: Surface insolation over part of France: between 28 W/m² and 302 W/m²; b) right: 
Radiation delivered to the cosmos (OLR) over the same geographical area: i.e. between 200 W/m² and 
260 W/m². Source:  KNMI Climate Explorer. 

Long series of observations of surface insolation are available only over some land areas; Figure 
27 compares over the same region the surface insolation and the OLR (Outgoing Longwave Ra-
diation) supplied to the cosmos at the top of the atmosphere: the motion of the atmosphere and of 
its water vapor is driven by contrasting temperatures; it ensures that, outside polar zones in winter, 
the OLR is relatively uniform between 220 and 280 W/m². 

Note that Hoogeveen et al. (2025), in their analysis of Earth’s energy-imbalance observation se-
ries, did not find evidence for a greenhouse-gas effect, consistent with the conclusions of Nikolov 
& Zeller (2024). 

  

Figure 28 a-b: Comparison of observed temperatures with values inferred from surface insolation. Source: 
KNMI Climate Explorer — NOAA/UD for OLR and E-OBS 23.1e (globrad) for surface solar radiation. a) 
left: temp. max. plotted against temp. computed; b) right: temp. min. plotted against temp. computed. 

The monthly averages tempmax(n) and tempmin(n) of the daily maximum and minimum tempera-
tures observed during a month n, over a zone, may be computed from the surface insolation in-
sol(n) over that zone during month n and the average temperatures tempmax(n–1) and tempmin(n–
1) of the previous month (n–1). Here tempmax(n) and tempmin(n) are in °C, and insol(n) denotes the 
monthly mean surface insolation in W m⁻². The regression coefficients therefore carry the appro-
priate inverse units. For instance, Figure 28,  

tempmax(n) = 0.349 + 0.483 tempmax(n) (n–1) + 0.055 insol(n), standard deviation of the error σ = 1.26°C  
tempmin (n) = –2.165 + 0.557 tempmin (n–1) + 0.0336 insol(n), standard deviation of the error σ = 1.54°C.  

This supports the conclusion that the surface insolation drives the surface temperatures that drive 
the natural degassing (or absorption) of CO2. 
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10. Examination of Some IPCC’s Theories, Models and Conjectures 

10.1 Introduction 

A model is not a demonstration; it can only justify mechanisms if, and only if, all its results are 
consistent with all observations. Approximately reproducing the X(t) curve is a necessary but by 
no means sufficient condition; the growth of the vegetation productivity (Figure 17) and the evo-
lution of δ13C must also be reproduced and the assumptions made must not be contrary to physics: 
see discussion in (Harde, 2019). The equations seen in Subsec. 5.2, i.e. (8), (9) and (10) meet 
these criteria. 

Three different "theories", incompatible with each other and incompatible with the figures read 
on Fig. 6.1 p. 471 of the report (IPCC, 2013), rest on the concepts “Airborne Fraction”, “Bern-
type impulse response” and “adjustment time” that don’t stand scrutiny (Poyet, 2022). 

Any increase in natural outgassing since pre-industrial times would contradict the central assump-
tion of the IPCC (2018) framework, namely that global temperature change is a function of the 
cumulative anthropogenic emissions ffossil(t) + LUC(t) since 1876 (see their Fig. 1.2, p. 57; Fig. 
2.3, p. 105). Figures 12-a (since 1850) and 13-b (since 1880) show curves of this kind, designed 
to make people believe in a false correlation like +0.45°C for +1000 Gt-CO2 in cumulative emis-
sions; Figure 12-b has shown that this is a deception. 

10.2 Using dpCO₂ /pCO₂ vs. dDIC /DIC to Suppress Circulating Fluxes 

Stating that: 
d𝑝𝐶𝑂2, seawater

𝑝𝐶𝑂2, seawater
= 𝑅

d𝐷𝐼𝐶

𝐷𝐼𝐶
                                                    (25) 

is a ploy used to suppress the fluxes circulating permanently between oceans and atmosphere. For 
a Revelle factor R = 12.5, a doubling of the CO2 pressure in the air and in surface water with dpCO2 

= pCO2 implies an increase of dDIC of only 1/12.5 = 8% of the DIC; assuming a sea surface layer 
containing as much carbon as the atmosphere with little or no exchange with the deep ocean, more 
than 90% of the extra carbon injected into the atmosphere is said to remain in the air. 

The contact between the oceans (361 million km², 71% of the Earth’s surface) and the atmosphere 
has been modelled as a single point of contact at a mean ocean surface temperature, for example 
between 17.7°C and 18.3°C (Bolin & Eriksson, 1959; Joos, 2014; Joos et al., 1996: p. 402; Oesch-
ger et al., 1975; Strassmann & Joos, 2018); this non-sense is used in so-called "models" to ignore 
the fluxes of about 100 Gt-C/year degassed (Figure 18-b) and absorbed by the surface oceans, 
and to pretend that the extra CO2 from fuels remains perpetually in the air. 

With respect to R, Wikipedia says9: "The capacity of the ocean waters to take up surplus (anthro-
pogenic) CO2 is inversely proportional to the value of the Revelle factor.... The Revelle effect 
describes how only a small fraction of pCO2 is present in ocean water when much larger amounts 
are added to the atmosphere". This is often said to be a "buffering effect of sea water". Egleston 
et al. (2010) describe these "buffer factors" in detail. 

This deception is still used: Köhler et al. (2018) invoke Revelle and this relation 9 times on four 
pages. 

With the approximation shown in Figure 25: 
pCO2sea water (µatm ) = 400 µatm (T / 299 K)12.5  (DICµmole/kg/ 2000)10.4  (2328 / TAlkµmole/kg)10.3 
R= 10.4 (eq. 25). Revelle et al. (1965) take R= 12.5,  various authors use R between 8.5 and 14. 

In reality, sea surface temperatures vary between +32°C and –1.8°C (Ventusky, 2025), giving a 

 
9  https://en.wikipedia.org/wiki/Revelle_factor 
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ratio 4.3 between the partial pressures computed with constant DIC and TAlk: therefore there is 
an inter-tropical zone that out-gasses (Figure 2) and colder sea surface zones that absorb, see maps 
in (Barry et al., 2010), with, as seen in Sec. 2, a permanent renewal of carbon in the surface ocean 
by obduction of 275 Gt-C/year where the ocean is degassing, and by subduction of almost as 
much to the depths where the ocean is absorbing. 

There is no static equilibrium without exchanges between reservoirs. For CO₂, as for water vapor, 
substantial fluxes have always circulated continuously, driven by contrasts in temperature and 
insolation (Sec. 6 and 9 above). 

Thus, the Revelle factor is deceptive because it assumes the ocean is a uniform, static reservoir, 
so that doubling atmospheric CO₂ would raise dissolved inorganic carbon (DIC) by only ~8%, 
suggesting over 90% of the extra CO₂ remains in the air, whereas in reality temperature contrasts 
drive continuous large-scale exchanges between tropical out-gassing and mid and high latitudes 
absorption. 

10.3 Historical Information 

In 1957, continuous infrared measurements of CO2 in air began with electronic equipment devel-
oped by Charles Keeling recruited by the Scripps Institution of Oceanography (Keeling et al., 
2025). The MLO series began in March 1958. The variations of almost 100 ppm over 24 hours 
observed on land near growing vegetation and reported, e.g. by Massen et al. (2005), make the 
measurements on land more uncertain except when strong winds bring them closer to observa-
tions made 1 km or 2 km above land surface or sea level (Massen & Beck, 2011). Hence Keeling’s 
choice of the South Pole and Mauna Loa observatories. 

10.3.1 Bolin & Eriksson (1959) 

Bolin & Eriksson (1959) begin with: "The dissociation equilibrium of carbon dioxide in the sea 
is discussed with particular emphasis on the buffering effect of sea water, when changes of the 
partial pressure of CO2 in the gas phase take place. The results are used in a study of the changes 
of the carbon dioxide content of the atmosphere and the sea that occur as a result of release of 
CO2 to the atmosphere by fossil fuel combustion. It is shown that the steady state considerations 
given by previous authors hereby are considerably modified." … "However, by studying the C14 
distribution in the atmosphere and the sea and its variation in the atmosphere during the last 100 
years as revealed by the ratio C14/C12 in wood one has been able to show that the exchange time 
between the atmosphere and the ocean is about 5 years (Craig,1957, 1958; Revelle and Suess, 
1957; Arnold and Anderson, 1957; Rafter and Ferguson, 1958).“ … “It has then been concluded 
by Revelle & Suess (1957) that most of the CO2 due to combustion has been transferred into the 
ocean and that a net increase of CO2 in the atmosphere of only a few percent has actually oc-
curred”. 

But then Bolin & Eriksson (1959) with the buffering effect of sea water try with a few pages of 
equations to make people believe that fuel emissions will remain forever in the atmosphere and 
will be the sole cause of the growth of X(t). Bolin (1970) predicts between 375 ppm and 400 ppm 
in 2000 (at MLO it was 369 ppm in 2000). 

Bolin & Eriksson (1959) reduce the system of three equations describing a static equilibrium 
between the atmosphere, the mixed layer at the surface of the ocean and the deep layer of the 
ocean, an equilibrium disturbed only by fossil emissions, to differential equations of order 3, one 
for each of the three compartments, with solutions of type: a0 + a1 exp(–t/b1) + a2 exp(–t/b2). Hence 
they assume that due to the “buffering effect” about 92% of the CO2 from fossil fuels remain in 
the air. Vegetation is ignored. 

With an exponential growth of fossil fuel emissions 4.9610-4·X(1880)·exp(0.029·(t – 1880)), 
where X(t) is the carbon mass in the atmosphere Bolin & Eriksson (1959) conclude that there will 
be between +25% and +40% more CO2 in the air in 2000 than in 1880, and that "The implications 
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with regard to the radiational equilibrium of the earth in such a case may be considerable." 

10.3.2 Revelle et al. (1965) 

The report (Revelle et al., 1965) published by the US Presidency, entitled “Carbon dioxide from 
fossil fuels – the invisible pollutant”, asserts that there is no exchange of carbon between the 
surface ocean (its 100 m deep "mixed" layer) and the deep ocean: "In the past the usual scientific 
belief has been that by far the larger part of any added CO2 would be absorbed in the ocean. This 
is undoubtedly true if we consider a sufficiently long time period, of the order of thousands or 
even perhaps hundreds of years ... but over shorter times only the uppermost layer takes part in 
exchanges with the air...".  

Revelle et al. (1965) use a remarkable circular reasoning to assume that half of all emissions 
remain perpetually in the air and devote four pages of their report to determining the masses of 
carbon M in the ocean (limited to the surface ocean and rendered inoperative by Revelle's factor!), 
A in the atmosphere and B in the biomass that would support his assumption. Revelle et al. (1965) 
state that in 1959, 13.8% of the CO2 in the atmosphere was from fossil fuels and that, with an 
exponential growth in "fossil" emissions at +3.2%/year (or +5%/year), fossil fuel CO2 will con-
tribute 57.04% (or 93.14%) of the CO2 in the air in 2009. 

This assumption of an exponential growth over 50 years, leading in 2009 to 4.8 times (or 11.5 
times) the 2.4 Gt-C/year of 1959, is contradicted by the observations seen in Sec. 4: the “fossil 
fuel” emissions have grown almost linearly by 0.12 Gt-C/yr since 1950, not exponentially. With 
the 5-year lifetime seen in Sec. 2, the fraction of the atmospheric stock coming from fuels was 
1.5% in 1959 and 4.8% in 2009, twelve and twenty times less than predicted by Revelle et al. 
(1965). Revelle et al. (1965) forecast “+14% to +30% for the year 2000 compared with 1950” 
(that is 385 ppm to 431 ppm significantly more than the 369 ppm observed at MLO in 2000), 
“between +0.6°C and +4°C for +25% on atmospheric CO2” (+25% w.r.t 1965 is 398 ppm was 
observed in 2014), and these authors anticipate the melting of the Antarctic ice cap and other 
deleterious effects, as consequences of the use of fossil fuels. 

Masson-Delmotte et al. (2021) have—implicitly—admitted the falsity of these assertions by 
showing Fig. 5.12 (p. 700 of AR6, WG1) the 275 Gt-C/year of Levy et al. (2013) between surface 
and deep oceans, obducted between the tropics and subducted at mid-latitudes. 

10.3.3 Oeschger et al. (1975) 

Oeschger et al. (1975) still use the Revelle factor and state p. 180: "Based on a preindustrial 
atmospheric CO2 concentration in 1860 of 292 ppm, the CO2 increase in 1970 amounted to 30 
ppm. Comparison with the cumulative production of 54.9 ppm indicates that 55% of the fossil 
CO2   produced until 1970 remained in the atmosphere." This is an introduction to the Bern Im-
pulse response debunked in Subsec. 6.1 and on Figure 16 above. 

10.3.4 Conservation Foundation (New York) (1963) 

Finally, let us mention the highly political program of the Conservation Foundation (New York), 
(1963), which became WWF in the 1990s: “If all known reserves of fossil fuel were used within 
the next 500 years, a very reasonable assumption, and if the CO2 system reaches CaCO3 equilib-
rium (reducing atmospheric CO2 to a minimum- a condition not likely to be reached for several 
thousand years) then the CO2 content of the atmosphere would be four times what it is at present 
and the average surface temperature of the earth would have risen by 7°C. (The possible change 
if CaCO3 equilibrium is not reached is 12.2°C). A change even half this great would be more than 
sufficient to cause vast changes in the climates of the earth; the polar ice caps would almost surely 
melt, inundating many densely settled coastal areas, including the cities of New York and London. 
If the temperature of the equatorial regions were to rise by this amount many life forms would be 
annihilated both on land and in the sea [...] Arousing public interest in the effects of the increase 
in atmospheric CO2 is as much a problem as the lack of adequate data. The potentially dangerous 
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increase of CO2 due to the burning of fossil fuels is only one example of a failure to consider the 
consequences of industrialization and economic development.” 

10.4 The Myth of a Permanent Airborne Fraction (AF) 

10.4.1 The “Carbon Sink”  

If cumulative fossil fuel emissions with Land Use Change (LUC) were the only cause of the 
growth of X(t), then dX(t)/dt = AF ffossil(t); a carbon sink, sink(t), absorbs each year what has not 
remained in the atmosphere: 

 
𝑠𝑖𝑛𝑘(𝑡) =𝑓୤୭ୱୱ୧୪(𝑡) −

ୢ௑(௧)

ୢ௧

                  =  (1 − 𝐴𝐹)𝑓୤୭ୱୱ୧୪(𝑡)

                           =  𝑎𝑏𝑠𝑜𝑟𝑏(𝑡) − 𝑑𝑒𝑔𝑎𝑠(𝑡)

                                              (26) 

Then natural absorption and degassing, 179 Gt-C/year and 175 Gt-C/year by mid-2023, with dif-
ferent physical causes, would be linked by a relation which, via ffossil(t) (10.4 Gt-C/year in 2023), 
depends solely on economic conditions!  This is supernatural and assumes that mid-latitude veg-
etation and oceans sort CO2 molecules according to their "natural" or "fossil fuel" origin, which 
is physically impossible for indistinguishable molecules. 

10.4.2 Calculations of AF (without and with LUC) 

Figure 29 shows that different methods give very different results and that before 1965, AF is 
close to 100%. Without the LUC (Land Use Change) seen in Figure 13-a, with the flux ffossil(t) 
over the period 1959-2024 (black curve Figure 29), AF varies between 6.7% and 141%. But AF 
cannot be greater than 100%! 

 
Figure 29: Airborne Fraction AF(t)% calculated for some formulations: 
in blue (XMLOlogis(t) – XMLOlogis(1876))/ ∫1876

t ffossil(t') dt', in red (XMLO(t) – XMLO(1959)) / ∫1959
t ffossil(t') dt', 

in black (XMLO(t+0.5) – XMLO(t–0.5)) / ffossil(t); the blue horizontal line is AF = 44% (IPCC, 2021). 

Adding LUC, for example, 1.65 Gt-C/year, brings AF over the 1959-2024 period to the range 5% 
to 102%, with an almost normal distribution of mean 44% and standard deviation 19%. Fig. 5.5(b) 
of Masson-Delmotte et al. (2021, p. 688) shows various LUC estimates since 1959: for the same 
year, it is between 0.6 Gt-C/yr and 2.4 Gt-C/yr. 

Masson-Delmotte et al.’s (2021, p. 690) Fig. 5.7 shows year-by-year averages of the ratio between 
increments of XMLO(t) and ffossil(t) + LUC(t): as the different fluxes entering the atmosphere are 
mixed together in a few weeks and become indistinguishable, this representation is absurd. AF(t) 
on this AR6 Fig. 5.7 over the years 1960-2019, is between 20% and 80%, average 44%. A 5-year 
moving average (a highly dubious trick that allows variability to be masked: see Subsec. 5.3) 
reduces the range of AF(t) values to 30% to 60%. 
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Hansen et al. (2013) found that their AF (calculated with a 7-year moving average!) has fallen 
from 60% in 2000 to 42% in 2011 and explained this by the magical properties of the "Chinese" 
coal which, in the 2000s, would have very extraordinarily stimulated the growth of the vegetation! 

10.4.3  δ13C Shows that Fossil Fuel Emissions do not Remain in the Air 

IPCC (2013) § 6 page 467: "About half of the emissions remained in the atmosphere (240 Gt-C) 
since 1750". Since 240 Gt-C is 29% of the carbon in the air at date 2011.0, the δ13C of the air 
should have been: 29% (–28‰) + 71% (–6.5‰) = –12,7‰. The δ13C observed at this date (Figure 
22-a) is –8.3‰! 

10.4.4 dX(t)/dt and ffossil(t) are not Correlated 

The equation dX(t)/dt = AF ffossil(t) has been shown to be impossible by Figure 7 with very differ-
ent autocorrelations of the stationary dX(t)/dt and of the non-stationary ARIMA I=1 ffossil(t) series, 
and by Figure 12-b, which shows a coefficient of determination R² = 0.038² = 0.001 between the 
two "detrended" series. It makes no sense to look for an AF between non-correlated time series. 

10.4.5 Absorb(t) Varies as X(t)/5 and not as degas(t) + 0.55 ffossil(t) 

IPCC (2013) § 6 page 467: "About half of the emissions remained in the atmosphere (240 Gt-C) 
since 1750 ... Globally, the size of the combined natural land and ocean sinks of CO2 approxi-
mately followed the atmospheric rate of increase, removing 55% of the total anthropogenic emis-
sions every year on average during 1958-2011." 

These statements mean:  sink(t) = absorb(t) – degas(t) = ffossil(t) – dX(t)/dt = 0.55 ffossil(t) and  
absorb(t) = degas(t) + 0.55 ffossil(t). 

But it's impossible for emissions to remain (remained) in the atmosphere, because any input into 
the atmosphere or the oceans will, after a certain time, be distributed between the three compart-
ments in proportion to their fraction of the total mass, i.e. around 2.2% for the atmosphere, and 
their atmospheric trace decreases according to the F1(t) impulse response, the black curve on 
Figure 16. 

If a fraction AF = 44% of the natural out-gassing degas(t) were to remain perpetually in the at-
mosphere, the dX(t)/dt increments would have risen from +28 ppm/yr in 1959 to +39 ppm/yr in 
2023, a far cry from the +0.8 ppm/yr and +3.5 ppm/yr observed in 1959 and 2023.  

So how do natural land and ocean sinks sort CO2 molecules according to their origin? 

10.4.6  Rapid Carbon Mixing Makes Annual Fossil-CO₂ Sink Budgets Meaningless 

Fossil fuel emissions are well mixed in the atmosphere with natural out-gassing and cannot be 
distributed among the three reservoirs on an annual basis. Stocker et al. (2013, p. 51) Fig. TS.4 
show the distribution of emissions among several sinks, year by year; the legend to this figure 
reads: "Annual anthropogenic CO2 emissions and their distribution among the atmosphere, land 
and oceans from 1750 to 2011. [...] Emissions and their distribution include only fluxes that have 
changed since 1750, and not natural CO2 fluxes for example, atmospheric uptake of CO2 through 
weathering, outgassing of CO2 from lakes and rivers, and outgassing of CO2 by the ocean from 
carbon contributed by rivers; see figure (6.1) between atmospheric, terrestrial and oceanic res-
ervoirs that existed before that time and still exist today." 

This year-by-year distribution of the year's emissions (Fig. TS.4) is incompatible with the mixing 
in the atmosphere of emissions from fuels with the natural out-gassing twenty times greater (60 
times in 1959), and with the circulation of carbon between the three main compartments. This 
mixing in the atmosphere takes a few weeks. 

The comment on this Fig. TS4 says that natural fluxes have not changed since 1750, that it only 
shows “fluxes that have changed since 1750, not natural CO2 fluxes”! The evolution of ocean 
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degassing (Figure 17 and Sec. 8 above) is absolutely taboo: the IPCC only mentions "outgassing 
of CO2 by the ocean from carbon delivered by rivers". 

10.4.7  AF Requires That Absorption Has Been Almost Constant Since 1850 

The relation +0.45°C for +1000 Gt-CO2 of cumulative emissions, (IPCC, 2021) Fig. SPM. 10 
assumes that the increase in X(t) since 1850 is entirely due to cumulative “human” emissions. 
This implies that the natural degassing has not changed since 1850, that is with a pre-industrial 
equilibrium around 1850: 

  degas(t)  = degas(1850) = absorb(1850),  hence  

 absorb(t) = – dX(t)/dt + degas(t) + ffossil(t) = – AF(t) ffossil(t) + absorb(1850) + ffossil(t) 
                   = absorb(1850) + (1– AF) ffossil(t) 

 absorb(2024) – absorb(1850) = 0.56 ffossil(2024) = 6 Gt-C/year.  

This is almost: 
 five times less than the number shown in Fig. 6-1 p. 471 of (IPCC, 2013) where we read: 

absorb(2020) – absorb(pre-industrial) = 20 (oceans) + 14×1/2 (NPP of vegetation) = 27 Gt-
C/yr, 

 ten times less than absorb(2024) – absorb(1850) = X(2024)/5 – X(1850)/5 = 61 Gt-C/yr, com-
puted with the logistic extension of MLO observations prior to 1958. 

10.4.8 Conclusion 

We've just seen seven demonstrations of the absurdity of the “Airborne Fraction” concept. 

10.5 Bern's Function or Bern Impulse Response 

The fraction F1(t) of a CO2 pulse in the atmosphere t years after its injection has been described 
in Sec. 6 Figure 16, and compared with Bern's function FB(t) plotted in red. For variants, see 
(Joos, 2014; Joos et al., 1996). FB(t) defies common sense: it does not apply to natural degassing 
and assumes that vegetation and oceans discriminate between CO2 molecules according to their 
"natural" or "fossil" origin. 

FB(t) is calibrated to be 1/e at the end of 100 years, hence the 100-year lifetime of CO2 in the air. 
IPCC (2007, p. 213) note a) of table 2-14 state: "The CO2 response function used in this report is 
based on the revised version of the Bern Carbon cycle model used in Chapter 10 of this report 
(Bern 2.5CC; Joos et al. 2001) using a background CO2 concentration value of 378 ppm.”. The 
decay of a pulse of CO2 with time t is: 

Bern1(t) = 0.217 + 0.259 exp(–t/172.9) + 0.338 exp(–t/18.51) + 0.186 exp(–t/1.186) 

This expression detailed in (UNFCCC, 2002) is still invoked in (IPCC, 2013) AR5 WG3 report. 
By definition of an impulse response, the change of the atmospheric stock is: 

𝑋(𝑡) − 𝑋(𝑡଴) = න 𝐹
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  and  𝐹(0) = 𝑎଴ + ෍ 𝑎௜ = 1                          (29) 

The natural out-gassing is assumed to be constant, it’s a basic assumption in SPM.10 (IPCC, 
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2021), thus dX(t)/dt = degas(t0) + ffossil(t) – absorb(t),  absorb(t) = degas(t0) + ffossil(t) – dX(t)/dt: 

𝑎𝑏𝑠𝑜𝑟𝑏(𝑡) = 𝑑𝑒𝑔𝑎𝑠(𝑡଴) + 𝑓୤୭ୱୱ୧୪(𝑡) − න ൬
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This expression of absorb(t) according to the IPCC depends only on ffossil(t). This is supernatural: 
physically, the absorption depends on the partial pressure and therefore on the mass X(t) of carbon 
in the air, of which it is one-fifth, also see section 5.2 of (Harde, 2019) for a complete discussion 
on that matter. 

Numerical check: absorb(2012) – degas(pre-industrial) = 2.7 Gt-C/y, ten times less than what is 
seen in Fig. 6-1, p. 471 of IPCC (2013) with (80 + 123 / 2) – (60.7 + 107.2 / 2) = 27.2 Gt-C/y (the 
GPP of 123 Gt-C/y in 2012 and 107.2 Gt-C/yr in pre-industrial time was divided by 2 to get the 
NPP as explained in Sec. 3) and 18 times less than X(2012)/5 – X(1750)/5 = 49.8 Gt-C/y. 

10.6   An "Adjustment Time" or "Atmospheric Lifetime" Between 50 and 200 Years 

Houghton et al. (1990) section 1.2.1 say "This short time scale (lifetime or residence time or 
turnover time of five years) should not be confused with the time needed for the atmospheric CO2 
level to adjust to a new equilibrium if sources or sinks change. This adjustment time, correspond-
ing to the lifetime in Table 1.1, is of the order of 50 to 200 years, determined mainly by the slow 
exchange of CO2 between surface waters and the deep ocean". Both of these statements are false: 
as seen in Sec. 2, the "slow exchange" in the ocean is 275 Gt-C/y, with a complete renewal of 
carbon in the out-gassing and absorbing areas of the surface ocean, and in the ocean it is not CO2 
but dissolved inorganic carbon, as seen in Sec. 8. 

A false correlation is used to produce an "adjustment time". This theory is reminiscent of "The 
streetlight effect, or the drunkard's search principle". In  

sink(t) = ffossil(t) – dX(t)/dt = absorb(t) – degas(t) 

only the term on the left is known with any precision (the area well-lit by the streetlamp where 
the drunk man is looking for his keys), while the natural outgassing and absorption fluxes are 
estimated with considerable uncertainty, over 20% according to the legend of Fig. 6.1 of IPCC 
(2013). Then sink(t) in Gt-C/yr, is regressed on X(t) and approximated by: 

X(t) /57 yr – 10.5 Gt-C/yr = (X(t) – 599 Gt-C) / 57 yrs (see Figure 30-a) 

57 years is called "adjustment time". 

Harde (2019) points out that a sudden shift at the end of 1751, the supposed start of industrializa-
tion, from absorb(t) = X(t)/5 yr to absorb(t) = degas(1751) + (X(t) – 599 Gt-C) / 57 yr is hard to 
believe and that this absorb(t) = degas(1751) – 10.5 Gt-C/yr + X(t)/57 yr is non-zero even if X(t) 
is zero! For a detailed discussion of nature as a net sink or net source, see also Harde (2025). 

Calculations of this kind are proposed by Cawley (2011) and Dengler (2024) to make us believe 
that there is an "adjustment time" other than the 5 years; G. Cawley begins his article with: "The 
error is due to confusion between residence time and adjustment time, which describes the time 
required for the concentration of CO2 in the atmosphere to return substantially to its initial con-
centration after a perturbation; unlike other atmospheric gases, residence time and adjustment 
time are not the same for carbon dioxide."  
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Figure 30 a-b: a) left, regression of sink(t) in red on (X(t) –599 Gt-C)/57yr, in black: a false correlation 
with a non-stationary series; b) right, the same series after subtraction of their linear trends 
("detrended") R2 = 0.04. 

 
Figure 16 (black curve) shows the response to a unit perturbation. 

sink(t) = ffossil(t) – dX(t)/dt in Figure 30-a (black) seems to correlate with (X(t) – 599 Gt-C)/57yr 
plotted in red: R2 =0.66. But since the X(t) series is not stationary, we must subtract from each 
series its linear trend, because non-stationary (trending) data can produce spurious correlations10. 
Detrending ensures that the analysis captures short-term co-variations rather than merely reflect-
ing their common long-term growth. Figure 30-b shows R2 = 0.04, so no valid correlation is pos-
sible, and the 57 year "adjustment time" is merely the result of a gross error in the processing of 
time series. 

Koutsoyiannis (2024a, 2024b) reviews the various IPCC assertions and the always changing de-
nominations: response time, adjustment time, lifetime, turnover time. Masson-Delmotte et al. 
(2021, p. 2237) say: "Carbon dioxide (CO₂) is an extreme example. Its turnover time is only about 
4 years because of the rapid exchange between the atmosphere and the ocean and terrestrial 
biota. However, a large part of that CO₂ is returned to the atmosphere within a few years. The 
adjustment time of CO₂ in the atmosphere is determined from the rates of removal of carbon by a 
range of processes with time scales from months to hundreds of thousands of years. As a result, 
15 to 40% of an emitted CO₂ pulse will remain in the atmosphere longer than 1,000 years, 10 to 
25% will remain about ten thousand years, and the rest will be removed over several hundred 
thousand years". 

Those assertions are based only on models and not on observations. The impulse response was 
seen in Sec. 6 (black curve in Figure 16) and tends towards 2.2%. 

And as noted by Harde (2017, 2019) the residence time τ resulting from a "range of processes of 
time scales τi" is given by 1/τ = Σ 1/τi and is therefore less than the smallest of the τi. 

10.7  A Thousand-Year Lifespan in the Atmosphere? 

IPCC (2013, p. 472), Box 6-1 write: "phase 1. Within several decades of CO2 emissions, about a 
 

10Detrending is applied solely to prevent trend-alignment artefacts: when two series both rise monoton-
ically, as is common in long-term climatic or geochemical time series, their raw values can appear corre-
lated even if their short-term fluctuations are unrelated. Removing the linear trend isolates the physically 
meaningful covariance without denying the reality of long-term changes in X(t). 
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third to half of an initial pulse of anthropogenic CO2 goes into the land and ocean, while the rest 
stays in the atmosphere […] Within a thousand years, the remaining atmospheric fraction of the 
CO2 emissions (see Section 6.3.2.4) is between 15% and 40%, depending on the amount of carbon 
released (Archer et al., 2009b)." 

As already mentioned, exchanges between compartments imply that a pulse of carbon injected 
into one compartment will, over the long term, be redistributed among all reservoirs in proportion 
to the carbon masses they contain. 

These carbon flows are, like water and water vapor flows, a consequence of temperature contrasts 
between latitudes and cannot be discounted as is done by assuming an "average" ocean at an 
"average temperature" (Caldeira & Wickett, 2003; Joos, 2014; Joos et al., 1996; Plass, 1956). 

Of an impulse of a few Gt-C, only 2.2% remains in the air after 200 years (Figure 16); of the 500 
Gt-C accumulated over 1751- end 2024 from coal, oil and gas combustion, 49 Gt-C or 23 ppm 
are still in the air (not yet absorbed). And only those 23 ppm may be impacted by "zero-carbon" 
policies. 

The impulse response in Figure 16 applied to the emissions series shows that of the 500 Gt-C 
cumulative emissions since 1751, 67 Gt-C or 32 ppm are in the atmosphere, of which 18 Gt-C or 
9 ppm are "zombies" that have returned to the atmosphere after one or several cycles of absorption 
and degassing. 

Discussing carbon pulses in the hundreds or thousands of Gt-C (IPCC, 2013), FAQ 6.2, Fig. 2, p. 
545, in an analysis of the effects of human emissions of a few Gt-C/year (initial pulse of anthro-
pogenic CO₂) is, say, very “surprising”! 

10.8 On the Oceanic CO2 Bottleneck 

Köhler et al. (2018) state: "Only this 1% of DIC in the surface ocean, found as dissolved CO2, 
can exchange with the atmosphere. Thus, the carbonate chemistry represents a bottleneck for the 
oceanic uptake of anthropogenic CO2 emitted to the atmosphere."  

In reality, conversions between the various forms of CO2 hydrate, HCO3
-
 and CO3

- - are almost 
instantaneous and, at a given total alkalinity (Sec. 8, Figure 25), it's DIC and temperature that 
determine the partial pressure of CO2 in seawater: no bottleneck!  

10.9 The Numbers on (IPCC, 2013) Fig. 6.1 Proves that a Major Oceanic Degassing is   
Required to Match MLO Observations  

The text associated with this Fig. 6.1 col. 2 of AR5 (IPCC, 2013, p. 470) is: "Reservoir turnover 
times, defined as reservoir mass of carbon divided by the exchange flux, range from a few years 
for the atmosphere to decades to millennia for the major carbon reservoirs of the land vegetation 
and soil and the various domains in the ocean." 

Berry (2021) uses the numbers of Fig. 6.1 of IPCC (2013), with four compartments atmosphere, 
vegetation and soil, surface ocean and deep ocean of masses X(t), Y(t), Zocs(t), Zocd(t) and a τ spe-
cific to each reservoir: τ is the quotient of the pre-industrial stock by the pre-industrial outflow 
stated by IPCC. The content of each compartment is derived from an equation like: 

dy(t)/dt = – y(t)/τ + g(t) where g(t) is the sum of the flows entering the compartment, with initial 
conditions X(1850) = 589 Gt-C, Y(1850) = 2500 Gt-C, Zsurface(1850) = 900 Gt-C, Zdeep(1850) = 
37,100 Gt-C and with ffossil(t) = 18 Gt-C/yr/(1 + exp((2011–t)/29 yr)). With the assumption of a 
constant τsurface ocean the distribution of the “fossil fuel carbon” between the four compartments is 
plotted in Figure 31-a, bottom four curves, practically Fig. 11 of (Berry, 2021). 

The gray curve of the atmospheric increments is very much below the black curve of MLO ob-
servations with their logistics extension at the top of Figure 31-a! Between the dates 1850 and 
2024, the calculation, without an ocean degassing increasing over time with the inter-tropical sea 
surface temperatures, says +78.9 Gt-C in the atmosphere (thick grey curve, i.e. +37 ppm), +193 
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Gt-C in vegetation and soils (green curve), +42.2 Gt-C in the surface ocean (thin blue curve) and 
+175.5 Gt-C in the deep ocean. 

The difference between the black curve (+310 Gt-C) and the grey curve (+80 Gt-C) of Figure 31a 
shows that the oceanic degassing plotted in Figure 18b of Subsec. 6.2 above is needed to match 
the MLO observations. 

 

 

Figure 31 a-b: a) left: Increments of the four stocks relative to 1850 computed from pre-industrial stocks 
and fluxes of (IPCC, 2013) Fig. 6.1. Green: vegetation and soils, thick blue: deep oceans, grey: air, 
blue: surface oceans. The black curves at the top are X(t) observed at MLO and its logistics extension; 
b) right: Impulse responses to a unit pulse in the air, with the pre-industrial stocks and flows. For the 
atmosphere the grey curve F2(t) = 0.024 + 0.892 exp(–t/5.28yr) + 0.084 exp(–t/64yr) is close to F1(t) 
seen in § 6 and to F3(t) = 0.034 + 0.858 exp(–t/3.17yr) + 0.107 exp(–t/52.8yr) computed with the flows 
and stocks of year 2011 taken from IPCC (2013). 
 

10.10 Hundreds of Millennia (100,000 Years and more) 

IPCC (2013, p. 472), Box 6.1: Multiple Residence Times for an Excess of Carbon Dioxide Emitted 
in the Atmosphere: "the removal of all the human-emitted CO2 from the atmosphere by natural 
processes will take a few hundred thousand years (high confidence) as shown by the timescales 
of the removal process shown in the table below (Archer and Brovkin, 2008)". 

CO2 has in the atmosphere a half-life of 3.5 years, i.e. after 7 years the remains of the initial stock 
is a fourth as 2-7/3.5 = 1/4. The time scale of the removal process is 3.5 years, not hundreds of 
millennia!  

10.11 Flows Between Deep Ocean and Surface Oceans  

The first IPCC report (Houghton et al., 1990) shows a pattern of 90 Gt-C/yr degassed, 92 Gt-C/yr 
absorbed but, between surface ocean and deep ocean, only 37 Gt-C/yr up-welling and 39 Gt-C/yr 
down-welling, seven times less than the 275 Gt-C of Sec. 2. 

The AR4 report (IPCC, 2007) shows for 1990, 90.6 Gt-C/yr degassed, and 92.2 Gt-C/yr absorbed, 
a 900 Gt-C stock in the surface ocean, 101 Gt-C/yr up-welling and 102.8 Gt-C/yr down-welling 
(including the 11 Gt-C/year in organic debris). This is almost three times less than the 275 Gt-
C/yr observed in Sec. 2 and finally accepted in 2021 by the IPCC, Fig. 5.12 p. 700 of AR6 (Mas-
son-Delmotte et al., 2021). 
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11.  Carbon-14 in the Atmosphere  

11.1 Historical Background 

Revelle et al.(1965) used 14C to dispel "the usual scientific belief of the past"; Δ14C is still invoked 
by (NOAA Global Monitoring Laboratory, 2021) to divert attention from the unchanged growth 
of X(t) at MLO despite a sharp reduction in emissions in 2020 due to the COVID lock-downs. 

11.2 On the Isotope 14C  

The activity of a sample is expressed in disintegration per second, in Bq units. The activity of a 
mass of 14C with an e-folding time (mean lifetime) of 8,267 years, (corresponding to a half-life of 
5,730 years), decreases as exp(–λ t) with λ = 1 / (8,267 × 365.25 × 86,400) = 3.83 × 10-12/s. One 
kilogram of 14C produces 1,649 × 1014 Bq. Natural 14C comes from nuclear reactions of nitrogen 
in the air with neutrons produced in the atmosphere by cosmic ray fluxes (mainly protons) and 
solar particles; it is a marker of the sun's magnetic activity.  

The Earth's magnetic field keeps out low-energy particles (< 10 GeV) except around the poles; 
around 55% of 14C production, say 2 atoms/cm²/s on average or 7.5 kg/year of 14C takes place in 
the stratosphere, which is thicker at high latitudes (Figure 32). 

Levin et al. (2010) say for natural production 2.1×1026 atoms/yr or a mass of 4.9 kg/year suggest-
ing a natural stock of 4.9 kg/year × 8267 years = 40,400 kg if solar activity did not vary, distrib-
uted in the three reservoirs atmosphere, oceans and vegetation and soils.  

Thermonuclear tests (Hua et al., 2013; Hua & Barbetti, 2004) sent an estimated 1,440 kg (one 
thousand four hundred forty kg) of 14C or ≈ 240 1020 Bq into the stratosphere between 1952 and 
1976, with a maximum between 1961 and 1963 (1,440 kg × 1.65 1014 Bq = 2.37 1020 Bq), i.e. 
about +3% of the total mass of 14C circulating between the three reservoirs. 

 

Figure 32: Natural production of 14C as a function of latitude and of a solar modulation parameter φ; 
after (Masarik & Beer, 1999) Fig. 8; φ has been reconstructed for the last millennium (Muscheler et al., 
2007): it oscillates between 200 MeV and 1200 MeV, with the number of sunspots (Brehm et al., 2021). 

These 1440 kg were gradually transferred to the troposphere and subsequently to vegetation, soils, 
and oceans (Salby & Harde, 2021a). For the annual renewal of approximately one-fifth of the 
mass of the lower stratosphere: see (Diallo et al., 2017; Holton et al., 1995; Stohl et al., 2003). 
Medical and industrial applications could release approximately 500 TeraBq/year, which would 
correspond to an annual mass of 3.03 kg of carbon-14: (500⋅1012 Bq/yr × 0.014 kg/mol)/ 
(3.833⋅10-12 s-1 × 6.022 1023) with λ = 3.833⋅10-12 s-1 as radioactive constant of carbon-14; 0.014 
kg/mol as the molar mass of carbon-14; and 6.022⋅1023 mol-1 as Avogadro's Number NA. 
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δ14C represents the decrease (in ‰) of carbon-14 in the sample before correction for isotopic 
fractionation with δ14C = [(Asample /Ao) –1] × 1000,  where Ao is the activity of the modern standard 
Oxalic acid and Asample is the equivalent for the sample in question. 

Δ14C is an indicator or marker that is equal to –1000‰ in the total absence of 14C (which is the 
case for fossil fuels). 

Δ14C = 0‰ applies for the initial dynamic equilibrium → production of 14C in the upper atmos-
phere = disappearance of 14C through decay. 

Δ14C represents the normalized value of δ14C, i.e., the activity is corrected for the isotopic frac-
tionation of the sample (δ13C). 

Δ14C values are normalized to a base value of –25‰ relative to the 12C/13C ratio of the VPDB 
standard. 

Now with these reminders, see supplement to (Wenger et al., 2019), with n12 and n14 that denote 
the number of 12C and of 14C atoms in the sample, let’s define: 

 r = n14/n12 be the measured 14C/12C atom ratio of the sample, 

 Rref = (14C/12C)ref the reference ratio, 

 δ13C the sample δ13C in ‰ (VPDB). 

The exact fractionation correction is then given by: 

 𝑟௡௢௥௠ = 𝑟 ቀ
ଵିଶହ ଵ଴଴଴⁄

ଵାఋభయ ଵ଴଴଴⁄
ቁ

ଶ
                                                      (32) 

So the exact normalization form is: 

 𝛥ଵସ𝐶 = 1000 ൬
௥೙೚ೝ೘

ோೝ೐೑
− 1൰                                                   (33) 

Measured 14C/12C ratios are normalized to a common δ13C= -25‰ using the standard squared ratio 
correction; for small δ13 values the normalization factor may be linearized to 1−2(25+δ13)/1000. 
Δ14C is then defined as 1000 times the normalized sample-to-reference ratio minus one. 

 𝛥ଵସ𝐶 ≈ 1000 ൤
௥൫ଵିଶ൫ଶହାఋభయ஼൯ ଵ଴଴଴⁄ ൯

ோೝ೐೑
− 1൨                            (34) 

If Δ14C = 0‰, then (14C/12C)sample = (14C/12C)ref = 1.217×10−12. A 10% increase in 14C (with 12C 
held constant) raises the ratio to 1.3387×10−12 and thus increases Δ14C from 0 ‰ to 100 ‰. The 
reference activity (absolute activity used for the standard) may be expressed as:  
AABS = 0.95×0.238 Bq/(g−C), i.e. AABS= 0.2261 Bq/(g−C). Here “ref” means (14C/12C)reference. 

 𝑅𝑒𝑓 = ൬
௡ೞ೟ೌ೙೏ೌೝ೏

భమ

௡ೞ೟ೌ೙೏ೌೝ೏
భర ൰ =

ఒேಲ

஺|೘೎|
=

ଷ.଼ଷଷଶ⋅ଵ଴షభమ×଺.଴ଶଶଷ⋅ଵ଴మయ

଴.ଽହ×଴.ଶଷ଼×ଵଶ
= 8.508 ⋅ 10ଵଵ              (35) 

For example, with δ13C = –8‰, (1 – 2 (25 + δ13C) / 1000) = 0.966, Δ14C‰ = f  × (n14/n12) – 1000, 
with f = 8.2191011. Here f is simply the normalizing factor that converts the raw isotopic ratio 
n14/n12 into the per-mil Δ¹⁴C scale, taking into account the δ¹³C correction. 

Historical reconstructions of Δ14C used carbon-14 dating over the last millennium range from 
+20‰ during the solar minima of the Little Ice Age, to –20‰ for a more active Sun. Figure 33 
shows observations made in New Zealand since 1955, with a break between July 1997 and June 
1999. Δ14C = –18‰ in December 1954. Figure 33-b shows the evolution of the mass of 14C in the 
atmosphere, calculated as: 

 ቆ
 ଵସ𝐶

 ଵଶ𝐶
ቇ

௦௔௠௣௟௘

=
ቀ

14
12

ቁ 𝑚ଵଶ ൬1 +
𝛥ଵସ𝐶
1000

൰

𝑅௥௘௙ ൤1 − 2
(25 + 𝛿ଵଷ𝐶)

1000
൨

                                       (36) 
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with: 

 m12: mass (or atom count) of ¹²C in the sample. 

 The denominator term [1−2(25+δ13C)/1000] corrects for isotopic fractionation to a nor-
malized δ13C = –25‰ (the standard normalization used in radiocarbon dating). 

Since 2000, it has grown by 1.8 kg/yr; the extension to the stratosphere of observations made at 
the surface and relevant only for the troposphere is debatable: see (UNSCEAR, 2000), Fig. II and 
Fig. III for an example of a study of the circulation between stratosphere and troposphere. 

  

Figure 33 a-b: a) left: Black dots: observations of Δ14C in New Zealand at the surface since 1955 (Turn-
bull et al., 2017). Δ14C = –18‰ in November 1954 and 0.1‰ in November 1955. The exponential ap-
proximation no longer holds after 2010: the yellow curve on a logarithmic scale is a straight line given 
by 91.6‰ – 4.3‰ (t – 2000); b) right: Mass of 14C in kg deduced from the ratio n14/n12. 

 

The trend in the mass of 14C in the atmosphere (in the lower troposphere) went from –6.85 kg/yr 
over 1980-1990 to +1.84 kg/yr after 2000; 14C emissions from industry, a reduced appetite for the 
heavy isotope in vegetation due to greater availability of 12C over the last decades, fluctuations in 
the flux of particles emitted by the sun and in the solar magnetic field, and the return to the air of 
carbon very rich in 14C absorbed in the years 1965-1985 by vegetation and soils or by the oceans 
are to be considered. The same reversal is seen on the Δ14C observed at Jungfraujoch (Switzer-
land, altitude 3571 m) and Schauinsland (Germany, Black Forest, altitude 1284 m) over 1986-
2016: after 2010, slope is –4.68‰/yr close to the –4.3‰/yr in Figure 33-a.  

The growth since 2000 of the mass of 14C in the air is not explained in (Levin, 2010) where the 
word fossil appears 74 times, the word anthropogenic 22 times: "While until the 1990s the de-
creasing trend of Δ14CO2 was governed by equilibration of the atmospheric bomb 14C perturbation 
with the oceans and terrestrial biosphere, the largest perturbation today are emissions of 14C-
free fossil fuel CO2. This source presently depletes global atmospheric Δ14CO2 by 12-14‰ yr-1, 
which is partially compensated by 14CO2 release from the biosphere, industrial 14C emissions and 
natural 14C production.". Note that the "–12‰/yr to –14‰/yr" was actually in 2010, –4.7‰/yr at 
Jungfraujoch and Schauinsland. No explanation in (Graven et al., 2020) where the words fossil 
and anthropogenic appear 111 times and 12 times. 

If all the growth of X(t) came from fossil fuels, n14 should have been constant, the ratio n14/n12 

should have decreased; yet with {n12 = 369 ppm, Δ14C = 87.4‰} at the beginning of 2000 and 
{n12 = 415 ppm, Δ14C = 6.9‰} end 2020, Ref n14 = (1+ Δ14C/1000) n12 increased from 401 to 418. 
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11.3 How Can 14C Be Used to Make People Believe Impossible Things? 

Let's now look at the use of 14C by Revelle et al. (1965). Three conditions are set a priori:  

(1) AF= 50% cf. Subsec. 10.4; what has to be proved is therefore presupposed! 
(2) dpCO2ocean/ pCO2ocean= R dDIC / DIC with R=12.5: (see Subsec. 10.2.) 
(3) "the fossil fuel combustion as the sole source of additional CO2 ". 

Based on those assumptions, Revelle et al. (1965) calculate multiple pairs (B, M) of carbon masses 
from the "Biosphere" B and "Marine" M reservoirs exchanging carbon with the atmosphere, using 
a variation of "–1% to –2% (most probable value)" in the ratio n14/n12 between 1850 and 1950, 
derived from radioactivity measurements in wood. 

The mass of carbon A in the air and the cumulative Q(t) "fossil fuel" emissions were in 1850: 
A = 599 Gt-C (for 283 ppm), Q(1850) = 1 Gt-C, and in 1950: A= 653 Gt-C (for 308 ppm), Q(1950) 
= 60 Gt-C. The (B, M) pairs with B + M = 4 A and a thin oceanic surface layer exchanging with 
the air M = 1.5 A are said the most "likely".  

Table 2 shows Xfossil(t) in ppm calculated with the impulse response F1(t) of Sec. 6 (F2(t) in Figure 
31-b gives almost the same results), XMLOlogis(t) and Δ14C = –3.2‰ in pre-industrial times; the 
calculated Δ14C are close to the observations compiled by Brehm et al. (2021) (their “Extended 
Data” Fig. 4). The Δ14C deduced from the Bern function in the last row of Table 2 show that the 
Bern function is a deception.  

Table 2: Xfossil in air/Xlogis, Δ14C and Ref n14/nC from 1850 to 1954. 

Observations at (Makara, NZ) say –18.4‰ in 1954. The last line gives Xfossil air/Xlogis and Δ14C calcu-
lated with FB(t) = Bern1(t) of Subsec. 10.5 above. 

year 1850 1900 1950 1954 (Makara, NZ) 
Xfossil/Xlogis in ppm 
Δ14C computed 

0.1/283 
–3.6‰ 

1.1/288 
–7.1‰ 

4/308 
–18‰ 

4.7/311 
–18.4‰ (observed) 

Ref n14/nC 1.0336 1.03 1.0187 1.01826 
Xfossil/Xlogis in ppm 

with Bern1(t) 
Δ14C with Bern1(t) 

0.3/283 
 

–4.3‰ 

3.3/288 
 

–14.5‰ 

16/308 
 

–54‰ 

17/311 
 

–59‰ 

As seen in Figure 11, over the period 1870-1959, SST20°S-20°N temperatures drove an increase of 
+33.2 ppm and fossil fuels +4.6 ppm: this is consistent with Table 2 and refutes Revelle's a priori 
condition (3): "fossil fuel combustion as the sole source of additional CO2". In fact as stated by 
(Salby & Harde, 2021a) "14CO2 provides an upper bound on the anthropogenic perturbation of 
atmospheric CO2". 

12.  Conclusion: Natural Dynamics Predominate 

The dynamics of atmospheric CO₂ are overwhelmingly governed by natural processes: the inso-
lation-driven sea surface temperatures (Figure 2 & 3), the net productivity of the vegetation (Fig-
ure 17) and the oceanic seawater chemistry (Sec. 8). 

The atmospheric carbon reservoir behaves like a bank account: its change over time equals the 
difference between inflow and outflow. The annual outflow corresponds to roughly one-fifth of 
the atmospheric stock (Sec. 3). All inflows are well mixed within a few weeks after degassing or 
emission:  

 1959: outflow = 669 Gt-C / 5 yr + ΔX(1.8 Gt-C/yr) = 135.6 Gt-C/ yr   
            = fossil(2.4 Gt-C / yr) + natural(133.2 Gt-C /yr) 

 2025: outflow = 903 Gt-C / 5 yr + ΔX(4.9 Gt-C/yr) = 185.5 Gt-C/ yr   
            = fossil(10.3 Gt-C / yr) + natural(175.2 Gt-C /yr) 
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The +42 Gt-C/yr increase in temperature-driven natural inflow explains 84% of the total inflow 
rise since 1959, in line with Harde (2019, 2023). 

The atmospheric stock can be decomposed into Xfossil(t) and Xnatural(t). For the quasi-linear increase 
in fossil fuel emissions (+0.12 Gt-C/yr since 1950), the outflow is mathematically (Sec. 4, equa-
tion 7) equal to the inflow observed four years earlier. The resulting growth of Xfossil is 5 × 0.12 = 
+0.6 Gt-C/yr, or +0.28 ppm/yr – i.e. eight times smaller than the observed increase of Xnatural= +5 
Gt-C/yr or +2.4 ppm/yr over the past decade. 

The derivative dXnatural(t) /dt is well described by 3.17 (ΔTSST + 0.25) (see blue curve Figure 2), 
where ΔTSST(t) is the inter-tropical sea surface temperature anomaly (Sec. 3, Figure 2). Since 
1959, Xfossil has risen from 10 to 49 Gt-C, while Xnatural has increased from 658 to 855 Gt-C, con-
sistent with the observed ¹³C isotopic evolution (Sec. 7). Summing up both components reproduce 
the Mauna Loa record within 1 ppm. 

Decarbonization policies can therefore affect only the 49 Gt-C (≈ 23 ppm) fossil component in 
2025. Even massive expenditures, such as the € 800 billion per year EU program, would lower 
atmospheric CO₂ by only about 0.5 ppm by 2035 (Subsec. 6.4). 

Using observed atmospheric CO₂ (285 ppm assumed in 1900; 426 ppm in 2025) and the estimated 
increase in global Net Primary Productivity (52 → 78 Gt-C/yr), the three-reservoir model – ocean, 
atmosphere, and vegetation/soils – connected by four fluxes yields an oceanic degassing increase 
from 70 to 112 Gt-C/yr (Figure 18-b). This matches the T12.5 dependence of seawater CO₂ partial 
pressure (Sec. 8; Figures 25 & 26). A crucial mechanism (Sec. 2) is the continuous obduction of 
≈ 275 Gt-C/yr from the deep ocean to the surface, maintaining CO₂ oversaturation in degassing 
zones and near-equal subduction in absorption zones. 

This paper directly challenges widely accepted concepts. IPCC theories and models, including 
the Airborne Fraction, the Bern function, adjustment time, the supposed persistence of significant 
fossil emissions in the atmosphere for centuries, the "oceanic CO₂ bottleneck" and the Revelle 
buffer factor, are exposed as misleading constructs that contradict observational data and funda-
mental physics. These models often assume a supernatural ability for natural sinks to discriminate 
between CO₂ molecules based on their origin, which is illogical. 

In conclusion, evidence demands a fundamental re-evaluation of the carbon cycle and its role in 
climate dynamics. The prevailing anthropocentric model, asserting that rising CO₂ and global 
temperature are driven primarily by human emissions, is inconsistent with multiple independent 
observations. Atmospheric CO₂ emerges as a consequence of surface temperature variation, not 
its cause. Earth’s oceans, soils, and vegetation control the carbon balance through powerful self-
regulating mechanisms that dwarf the effect of fossil fuel combustion. 

Climate science must now move beyond the IPCC’s artificial constructs and recognize that natural 
feedbacks, not anthropogenic perturbations, govern both the carbon cycle and the long-term tra-
jectory of Earth’s climate. 
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Appendix A: List of Notations 
 
absorb(t): annual carbon uptake by vegetation and oceans 
AF: Airborne Fraction 
AT(t): Temperature anomaly; ATSST(t) month-by-month mean inter-tropical sea surface 

temperature anomaly 
degas(t): carbon released from oceans, vegetation and soils (excluding vegetation respiration 

over 24 hours) 
f(t): total carbon flux entering the atmosphere,  
ffossil(t) : carbon flux from fossil fuel emissions,  
flogis(t) = 17.92 / (1 + exp((2011t)/29)) a logistic approximation of ffossil(t) whose integral 

over 1751-2025 is 500.6 Gt-C equal to the integral over the economic series of emis-
sions from oil, coal and gas and cement plants 

Fx(t): F1(t) (Sec. 6), F2(t) (Sec. 10.9, Fig. 31-b), FB(t) (Sec. 6.1, Fig. 16) : impulse response 
functions  

GPP: Gross Primary Productivity (includes vegetation respiration) 
Gt-C: gigaton carbon; 1 Gt-C = 1012 kg C; Gt-CO2: gigaton CO2; 1 ton CO2 = 273 kg-C 
MLO: Mauna Loa Observatory 
NPP: Net Primary Productivity, i.e. Carbon uptake by vegetation with the 24-hour respira-

tion subtracted 
ppm: part per million number of molecules of one type per million molecules of air; 1 ppm 

CO2 = 2.12 Gt-C 
pCO2air: partial pressures of CO2 in the air (µatm) 
pCO2seawater: partial pressures of CO2 in seawater (µatm) 
Q(t): cumulative fossil fuel emissions up to time t  
R: Revelle buffer factor between 9.5 to 12.5 
Ref 13C/12C: reference for ratio 13C/12C (VPDB11) 
Ref 14C/12C: reference for ratio 14C/12C see note12. 
SPO: South Pole Observatory 
SST20°S-20°N: Sea Surface Temperature Sea surface temperature averaged between 20°S and 20°N 
X(t):  mass of carbon in the air 
Xfossil (t): mass of carbon in the air from fossil fuels 
Xnatural (t):  mass of carbon in the air from natural degassing 
XMLO(t): content of carbon dioxide in the atmosphere observed at MLO 
XMLOlogis(t) 275 + 555.72 / (1 + exp((2066.95 t)/ 42.16)) ppm extends XMLO  
Y(t): mass of carbon in vegetation & soil 
Z(t): mass of carbon in the ocean 

 
11 δ¹³C values are reported relative to the Vienna Pee Dee Belemnite (VPDB) standard, derived from a 

Cretaceous belemnite fossil from the Pee Dee Formation in South Carolina. See equation (13). 
12 For radiocarbon dating, the reference is usually Oxalic Acid I (HOx1) and II (HOx2) standards, normal-

ized to δ¹³C = –25‰ VPDB. Δ¹⁴C (or F¹⁴C) relative to an oxalic acid radiocarbon standard, but with δ¹³C 
normalization to VPDB. VPDB is never used directly for radiocarbon ¹⁴C/¹²C — but it’s still in the back-
ground, because radiocarbon results are corrected for isotopic fractionation using δ¹³C vs. VPDB. 

https://www.elsevier.com/books/co2-in-seawater-equilibrium-kinetics-isotopes/zeebe/978-0-444-50946-8
https://www.elsevier.com/books/co2-in-seawater-equilibrium-kinetics-isotopes/zeebe/978-0-444-50946-8
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Zocs(t): mass of carbon in the surface ocean 
Zocd(t): mass of carbon in the deep ocean 
τ(t): ratio stock/out-flow for a reservoir (generally taken over 12 months) 
 
Appendix B: TAlk Equation (      22)  
 
Let x=[OH−]. Using KH2O for the  water  autoprotolysis  constant  (i.e.  Kw),  k1,  k2  for  the  first  and  
second dissociation constants of carbonic acid, kb  for the borate  dissociation  constant,  DIC  for  
total dissolved inorganic carbon, and BT(S) for total boron (possibly scaled with salinity S), the 
total alkalinity equation can be written as equation (22),      where

 
TA

 
(or

 
TAlk)

 
is

 
the

 
total

 alkalinity.  Let’s  see  what’s  the  physical  meaning  of  terms,  

 First (fraction) term: carbonate alkalinity contribution from DIC, written in a form using 
[OH−] via the relationships between [H+], [OH−], and the carbonate equilibria. 

 Second term: borate alkalinity = BT(S)×[B(OH)4
−] expressed using [OH−] (with kb and 

KH2O  appearing because [H+]=KH2O /[OH−]). 

 Third and fourth terms: contributions from water autoprotolysis: −KH2O/x is −[H+] (since 
[H+] = KH2O/[OH−]), and +x is +[OH−].  

Now let’s see what are the Units / dimensions used. 

 x has units of mol·L⁻¹ (or mol·m⁻³ depending on the concentration units used). 

 KH2O has units such that KH2O/x yields a concentration (same units as x). If SI is used: 
KH2O in (mol·m⁻³)² so that [H+]=KH2O/[OH−] has mol·m⁻³ units, more commonly Kw is 
given in (mol·L⁻¹)² or (mol·m⁻³)²; One needs to be consistent with DIC and TA units. 

 DIC and TA must use the same concentration units as x (e.g. µmol·kg⁻¹, mmol·m⁻³, etc.). 

Solving for x: 

 this  equation  (22      )    
   

is
 

nonlinear
 

in
 

x.
 

The
 

standard
 

approach
 

is
 

to
 

solve
 

for
 

x
 

numerically

 
(e.g.

 
Newton–Raphson).

 
Use

 
the

 
form

 
above

 
to

 
compute

 
F(x)−TAlk

 
and

 
its

 
derivative

 

for

 
Newton.

 
 
If

 
one

 
prefers

 
to

 
solve

 
for

 
[H+]

 
instead,

 
substitute

 
[H+]

 
=

 
KH2O/x

 
and

 
rewrite

 
the

 
equation

 
in

 
h=[H+];

 
numerics

 
can

 
sometimes

 
be

 
more

 
stable

 
in

 
h

 
for

 
very

 
small/large

 
values.
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Radiative Forcing of Water Vapour  

and its Use in Climate Models 
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Abstract 

The positive feedback of water vapour has been the basic feature of  General Circulation Models 
(GCMs), which approximately doubles the warming impacts of any other climate drivers. Some 
published scientific papers have shown that simple climate models without this feature can sim-
ulate the temperatures of the 2000s very well. On the other hand, the observed humidity observa-
tions revealed that it varies, but not according to the water feedback theory. There is a need for 
an optional method for calculating the warming impacts of water vapour. In this study, the radia-
tive forcing (RF) value of water vapour for different atmospheric water amounts has been calcu-
lated by applying the line-by-line (LBL) method. A simple climate model by the author has been 
modified by implementing this dependency in the same way as for the other greenhouse (GH) 
gases. This model has been used for the simulations of absolute yearly temperature and humidity 
changes, as well as for decadal-long changes by applying CERES (Clouds and the Earth's Radiant 
Energy System) observations. These simulations reveal that humidity increases are strongly re-
lated to the primary energy changes of the absorbed solar radiation (ASR). The yearly temperature 
variations of the hemispheres show that water vapour increase has about a 14 % temperature 
impact and not about 100 % as assumed by the water feedback theory. This water vapour RF 
effect explains good results in simulating the high temperatures of the 2000s. The recent rapid 
warming during the 2000s is mainly caused by ASR variations, and this new calculation method 
can be applied in temperature simulations. 

  

Keywords: positive water feedback; RF of water vapour; absorbed solar radiation; natural cli-
mate drivers; simple climate models; warming in the 2000s. 
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1. Introduction  

1.1 The solar activity changes over the 1850 – present period 

In the temperature simulations of the 2000s in this study, the role of the absorbed solar radiation 
(ASR) turns out to be significant. Therefore, it has been considered useful to carry out a short 
survey of research studies about solar activity changes over the period that the IPCC has applied 
in its own simulations by GCMs (General Climate Models) and in the CMIP6 (Coupled Model 
Intercomparison Project Phase 6) simulations. 

Connolly et al. (2021) have carried out a comprehensive study consisting of 16 TSI and 5 tem-
perature datasets. The TSI dataset included high-variability TSI estimates as well as low-varia-
bility datasets. Among the low-variability datasets is that of Matthes et al. (2017), which has been 
recommended to be applied in the CMIP6 simulations, and it is in line with the IPCC’s general 
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conclusion about the solar variation impacts being insignificant, as slow as ± 0.01 ºC (IPCC, 
2021). 

The results of Connolly et al. (2021) show that, applying high-variability TSI datasets like those 
of Hoyt & Schatten  (1993)  and  Bard  et  al.  (2000),  most of the NH warming trend since the 19th 
century can be related to solar variability. 

Stefani (2021) applied the multiregression method to correlate solar activity and logarithmic CO2 
concentration to sea surface temperature variations from 1850 to 2018. The geomagnetic aa index 
was applied as a proxy for solar activity changes. The correlation R2 value of around 0.87 was for 
a climate sensitivity (of TCR type) in the range of 0.6 K to 1.6 K per doubling of CO2. By elimi-
nating the data of the last decade, the regression produced a significantly higher weight of the aa 
index. 

Scafetta (2023) applied an energy balance model calibrated with a differential multilinear regres-
sion method in simulating the global temperature response from 1850 to 2020. He used anthro-
pogenic, volcanic and solar climate drivers. As the solar proxies, he used three balanced multi-
proxy TSI datasets combined from high-variability TSI records and the record of Matthes et al. 
(2017) as a reference, since it has been applied by the IPCC. The simulation results show that 
greater TSI variability matches more closely with the temperature records, implying that the ECS 
should be from 1.4 ºC to 2.8 ºC with a mean of 2.1 ºC. 

Harde (2022) has applied his energy-radiation-balance model for the simulation of global tem-
perature. He has integrated into his model the same feedbacks as in the CMIP6 model, and in 
addition to these, also convection and evaporation feedbacks. The best simulation result with a 
correlation factor of r = 0.95 was achieved with the ECS value of 0.68 °C and the TSI dataset of 
Hoyt & Schatten (1993). A convincing feature of this simulation was the accurate reproduction 
of the temperature peak of the 1930s and the strong temperature drop from the 50s to 80s. 

It can be summarised that the published high-variability TSI estimates outnumber the low-varia-
bility TSI estimates, and the different types of analyses show that in simulations, they reproduce 
the observed temperature trends with much better accuracy than the low-variability TSI dataset 
applied in the CMIP6 simulations. 

1.2 The theory of positive water feedback applied by the IPCC 

GCMs have an essential role in calculating global surface temperature changes.  Manabe & Weth-
erald (1967) were the first to introduce positive water feedback. Their calculations showed only 
that water feedback doubles the original RF of CO2. The consequence of this feature was the λ 
value of the climate sensitivity parameter of 0.53 K/(Wm-2) in their study. Without positive water 
feedback, the λ value is about 0.27 K/(Wm-2) as shown by Ollila (2023b). Manabe & Wetherald 
(1967) did not show that water feedback is a persistent property of the climate, even though many 
climate researchers think so. This feature became one of the essential features of GCMs already 
in the 1980s.  

Positive water feedback is a cornerstone in any GCM and the simple model applied by the IPCC.  
The IPCC (2007) writes in AR4 that “The positive water feedback doubles the radiative forcing 
of any GH gas”.  The AR5 (IPCC 2013, p. 667) writes “Therefore, although CO2 is the main 
control knob on climate, water vapour is a strong and fast feedback that amplifies any initial 
forcing by a typical factor between two and three.” The fast feedback means that the response 
happens on the same timescale as any climate driver, and like CO2 warms up the surface. The 
typical lifetime of water vapour in the atmosphere is about ten days.   

The theoretical justification of positive water feedback is based on the equation of Clausius-
Clapeyron (C-C), and this relationship has been referred to 36 times in AR6 (IPCC, 2021) as an 
explanation of water feedback in the lower atmosphere. This equation represents the pressure-
temperature relationship in a saturated water vapour atmosphere. The C-C relation states that a 1-
degree increase raises the water-holding capacity of the atmosphere by 6‐7%. The actual amount 
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of water in the atmosphere is given by the water-holding capacity times the relative humidity of 
the atmosphere. The real atmosphere is not saturated by water vapour, since the atmospheric hu-
midity is around 70% and it varies greatly in different climate zones. Therefore, the theoretical 
basis is weak.  

The C-C equation presupposes that there is enough energy to evaporate water while maintaining 
100 % saturation in the gaseous atmosphere. This is not the case in the atmosphere. 

The direct humidity and temperature measurements from 1980 onwards show no positive water 
feedback in the long run (Fig. 1). Reliable empirical conclusions about the water feedback can be 
drawn from the behaviour of the climate since 1979, after the worldwide use of the new humidity 
semiconductor technology Humicap® of Vaisala.  

 

Figure 1: The temperature trend (MetOffice, 2025) and Total Precipitable Water (NOAA, 2025a) trends 
according to two humidity measurements from 1980 to 2024. ERA5 stands for the fifth generation of the 
European Centre for Medium-Range Weather Forecasts (ECMWF) reanalysis for the global climate 
and weather. The NCEP/NCAR reanalysis is a joint project between the National Centers for Environ-
mental Prediction (NCEP) and the National Center for Atmospheric Research (NCAR) in the United 
States. 
 

Wang et al. (2020) carried out an accuracy analysis on the five commonly used absolute humidity 
measurement data sets (precipitated water in millimetres = total precipitable water = TPW). They 
found that the smallest root mean square error of 1.45 mm was in JRA5 data, and the greatest was 
3.34 mm in the NCEP/NCAR dataset for the period from 2016 to 2018 (NOAA 2025b). In the 
later analyses of this study, the humidity values of ERA5 have been applied.  

These data sets have been depicted in Fig. 1 as yearly and 7-year running mean values. It can be 
noticed that the long-term value of temperature has increased by about 0.8 ⁰C from 1979 to 1994, 
but both TPW graph values show a negative trend (a 7-year running mean). These empirical trends 
of TPW versus temperature conflict with the positive water feedback theory.  Trenberth et al. 
(2015) found that the three-dimensional Community Earth System Model (CESM), calculating a 
global surface mean temperature (GSMT) increase of 0.4 ºC from 2000-2014, was significantly 
greater than the observed 0.12 ºC. They concluded that the temperature pause was still a reality 
at the end of 2014. During the temperature pause, both TPW values showed a positive trend. Since 
2014, both the temperature and TPW values have increased significantly, and in this sense, it is 
in line with the water feedback theory. The reasons for this change will be analysed later. 

It is the common principle of science that a theory or a paradigm must pass through any experi-
ment or test. Albert Einstein experienced a lot of criticism for his new theory of relativity. He 
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responded to critics: “No amount of experimentation can ever prove me right; a single experiment 
can prove me wrong.” This same applies to the paradigm of positive water feedback applied by 
the IPCC.  

1.3 Studies of water feedback and greenhouse effect magnitude by dissenting researchers 

Harde (2014; 2017) has carried out a theoretical analysis of the magnitudes of water vapour feed-
back based on the spectral lines of water and CO2, which have overlapping absorption regions. 
He realises that the water spectral lines are already strongly saturated in the same way as CO2 in 
this region. Therefore, by increasing water concentration, only the far wings of its spectral lines 
and weak absorption bands can further contribute to an additional absorption, which increases 
roughly logarithmically with the water vapour concentration. Water vapour concentration in-
creases exponentially with rising temperature, but due to the C-C relation, the overall effect results 
in a linear increase in the absorptivities. Harde concluded that the water vapour feedback ampli-
fication is only 1.14 or 14 %, and not 2 or even more as reported by the IPCC in the AR5 (IPCC 
2013). Harde (2022) applied this water feedback in his TSI and CO2 simulations with good results. 

Koutsoyiannis (2024) has carried out a comprehensive study about the GH effect and the magni-
tude of its contributors. The results based on MODTRAN calculations and mathematical analyses 
show that the contribution of CO2 is 4 % – 5 %, and water and clouds dominate with a contribution 
of 87 % – 95 %. These results can be compared to other results, which are surprisingly few.  

Schmidt et al (2010) have reported the CO2 contribution as 19 %. Their calculation method is 
exceptional, since it is an average of two calculations: absorption change by removing CO2 from 
the atmosphere, and calculating the absorption increase if CO2, as it is the only GH gas in the 
atmosphere. The most common procedure is a so-called ”single factor removal”, which means 
that each GH gas has been removed from the atmospheric composition, and the reduced absorp-
tion amount is calculated for the total absorption in the atmosphere. The CO2 contributions cal-
culated with this method and applying the total absorption of 155-159 Wm-2 of the terrestrial 
radiation are very close to each other: Schmidt et al. (2010) 14,9 %, Harde (2017) 15 %, and Ollila 
(2017) 14.9 %. 

Ollila (2019) has found that the IPCC (2013; 2021) has its own definitions of the GH effect, which 
are not based on any scientific publication. He has proposed a new definition for the magnitude 
of the GH effect. It is based on the Earth’s energy balance, which shows that the surplus of radi-
ation energy on the surface in comparison to the net energy input from the sun is 510  240  
Wm-2 = 270 Wm-2. By applying this figure, the contribution of CO2 to the GH effect is only 7.4 
%. 

Koutsoyiannis (2024) has also calculated the relative strengths of water over CO2 based on im-
pacts on the upward and downward LW radiation changes in the atmosphere, and the correspond-
ing values are 9.1 and 13.8, which means an average value of 11.9. It is interesting to note that 
the same value of Ollila (2017) is 11.8 based on the LW absorption in the atmosphere. It should 
be noted that the contribution calculations in the GH effect consider the total impact of a GH gas 
from its zero concentration to the present-day value. The relative strength calculations consider 
only relatively small concentration changes – typically 10 % increase - from the present values. 
Especially, the RF value of CO2 is very nonlinear, but the water vapour RF value is close to linear 
dependency. 

These different analyses show that the research studies of dissenting researchers concerning the 
strength and role of water and CO2 deviate remarkably from the mainstream results. 

1.4 Research study theories of the warming in the 2000s 

The temperature trend of the 2000s shows that there has been a so-called temperature pause from 
2000 to 2014 and thereafter a relatively strong warming period with record-high temperatures in 
2023 - 2024. Many different theories have been proposed for the reasons for the pause, and in the 
same way, different theories have been proposed for the present warming after 2014, since the 
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GH gases cannot explain the present warming. 

Loeb et al. (2018) found a significant reduction of 0.83 Wm-2 in global mean reflected SW flux 
at the TOA during the years 2014 - 2017. Ollila (2020) used the same CERES observations and 
identified that the SW anomaly forcing caused about 50 % of the El Niño temperature impact of 
2015-2016. Ollila (2021) noticed that the GCMs can simulate current temperatures only if the SW 
anomaly of the 2000s has been omitted.  

Harde (2022) has summarised research studies on the complicated nature of cloud feedback with 
observations that it is positive over the Pacific due to low-level cloud impacts and negative in the 
tropics. He has been able to formulate a mathematical equation connecting the cloud cover de-
pendency on the TSI. Svensmark (2019) developed a comprehensive model about the mechanism 
between solar activity variations and cosmic radiation, which changes cloud formation through 
the generation rate of aerosols as water vapour condensation nuclei.  

The later study of Loeb et al. (2021) has confirmed the earlier finding of Loeb et al. (2018) that 
low-level cloud reduction (the reduced albedo) has been the reason for increased ASR. Ollila 
(2023a) and Nikolev and Zeller (2024) have shown that the ASR anomaly variations can explain 
the major part of the temperature variations of the 2000s.   

During the last few years, some research studies have been published, in which a common feature 
has been to identify anthropogenic reasons for the reduced albedo of the Earth. Due to new legis-
lation, the sulphur emissions from the shipping industry have reduced, and the impacts have been 
at a maximum of 0.1 Wm-2 according to Diamond (2023) and from 0.02 to 0.06 Wm-2 according 
to Rantanen and Laaksonen (2024). 

Hodnebrog et al. (2024) recognised the substantial diversity in aerosol Effective Radiative Forc-
ing (ERF) among Coupled Model Intercomparison Project phase 6 (CMIP6) GCM models. For 
example, the decline of SO2 emissions in China after 2007 is not accounted for in the earlier GCM 
simulations. They carried out a multi-model multi-ensemble approach, and they found that the 
ERF due to anthropogenic aerosol emission reductions has led to a 0.2 ± 0.1 Wm−2 dec-
ade−1 strengthening of the 2001–2019 imbalance trend. 

Since the reduction of SO2 aerosol has been the most significant in China, the temperature trends 
in China and the global temperature trend are depicted in Fig. 2. 

Figure 2:  The global temperature trend (MetOffice, 2024), the seawater temperature trend, HadSST.4.1 
(Metoffice, 2025) and the temperature trend over China (NOAA, 2025b). 
 

The fluctuations of temperature trends in China are much greater than those in global tempera-
tures, but the linear increase during the last 10 years is similar to the global sea surface tempera-
ture. Since the fluctuations are so great, some other factors are more probable reasons for 
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temperature fluctuations than the aerosol reductions. 

The Hunga Tonga–Hunga Haʻapai submarine volcano eruption of magnitude VEI-5 in January 
2022 created a strong water and ash plume reaching the stratosphere. Rantanen and Laaksonen 
(2024) have estimated the radiative warming effects of this eruption to be from 0.02 to 0.07  
Wm-2, and the estimate of Hansen et (2025) was negative, of -0.3 Wm-2.  Gupta et al. (2025) have 
studied in detail the water and sulphate impacts in the stratosphere, and they found that sulphates 
themselves and sulphate aerosols’ interactions with humidity deplete the ozone layer, which leads 
to cooling. The net effect of the eruption was estimated to be −0.10 ± 0.02 K in the southern hem-
isphere. It means that opposite results have been achieved.  

Raghuraman et al. (2025) have shown that climate models have such a large internal variability 
that they can simulate high-temperature spikes, which happened in 1976 - 1977 and 2022 - 2023, 
without external forcing or changes in GH gas concentrations or aerosols. These events happened 
under special conditions connected to the change from the La Niña to the El Niño phase. It should 
be noted that this is a result of GCM simulations, and the real physical reason cannot be identified. 

Ma et al. (2025) found that there has been a decline in ocean evaporation due to wind, even after 
2017. This result is not in line with the TPW observations since the global humidity has increased 
steadily even after 2017 (Fig. 1), and it may be one of the explanations for the high temperatures 
of the years 2023 and 2024.  

Myessignac et al. (2023) found that the climate feedback parameter – the reciprocal of the climate 
sensitivity parameter – is not constant but varies within the range from −3.2 to  −1.0 Wm-2K-1 
since 1970, the sea surface temperature, and is related to the phase of PDO (Pacific Decadal Os-
cillation). This result is in line with the information in Fig. 1. The PDO is a well-known general 
climate oscillation phenomenon, and there is no recognised increase of a warm phase during the 
2000s, but there has been a cold phase after 2015 (NOAA 2025a). 

The short-term temperature changes are distinctly related to the El Niño and La Niña events, 
which are caused by the regional changes of the ocean currents and winds in the tropical central 
and eastern Pacific Ocean. They initiate the temperature change, and the strong change in absolute 
humidity amplifies the change by a factor of about 100 percent of very strong El Niños (Ollila 
2020). It is practically the same as the positive feedback used by the IPCC.  

As we can see in the referred studies above, the proposed anthropogenic reasons are not strong in 
explaining the warming after the year 2015. But there is another strong climate driver, as origi-
nally found by Loeb et al. (2018), that the main reason is the reduction of the albedo, which has 
caused a strong increase in ASR. So far, there is no general explanation for the cloudiness de-
crease identified by Loeb et (2018), even though sulphate reductions have been proposed as an 
anthropogenic reason. Marsh and Svensmark (2000) have found a likely reason for cloudiness 
changes as they identified a relationship between the solar-modulated cosmic rays on global cloud 
cover (≤ 3 km). 

The reasons for temperature changes in the 2000s are opposite to the findings of the latest reports 
of IPCC (2013,  2021), which show the aerosol-cloud radiation cooling effect from -0.82 Wm-2 
in 2011 to -1.00 Wm-2 in 2019. A clear change happened in the 2000s, and the most common 
paradigm is that cloudiness now plays a major role in recent sudden temperature variations. 

The main objection to using ASR as a climate driver in climate models is the claim that it is not 
an independent climate driver. It is well-known that ASR depends strongly on cloudiness, as 
shown by Loeb et al (2021). One can ask, is CO2 an independent climate variable? It is not, since 
the yearly atmospheric CO2 concentration increases only by about 45 % (IPCC 2021) in compar-
ison to the value calculated from the actual fossil fuel emissions, but it varies yearly; the reason 
is deeply related to the CO2 circulation between the atmosphere, the ocean, and the land plants. 
Since climate science is not capable of calculating ASR utilising cloud properties, it is well-es-
tablished to use ASR as an independent climate driver for the time being. The real test can be 
found in temperature simulations of the short and long runs in Section 4. 
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These findings mean that there is a need to develop the RF value for water vapour in the same 
way as for the other GH gases. The author has not identified any RF equations for water, and 
therefore, he has carried out spectral analysis calculations to quantify the relationship between RF 
values and absolute humidity.  

The present GCMs do not apply very well to temperature simulations of the 2000s, since they do 
not utilise direct CERES radiation observations and are poor at simulating ASR variations (Tren-
berth and Fasullo 2009; Stephens et al. 2022; IPCC 2013; IPCC 2021). The idea of GCMs has 
been that they should be capable of simulating also cloudiness changes, but so far, GCMs cannot 
do it. 

Ollila (2023a) has not applied the positive water feedback in his simple climate models. Even 
though the water impact has been assumed to be constant, his simulation results during the 2000s 
are very close to the observed temperatures. This model has been named Ollila-1. In this study, a 
new version of Ollila-2 has been developed. The warming impact of water vapour in the Ollila-2 
model is based on the RF values of water vapour, utilising the observed humidity concentrations 
in the atmosphere.  

The objectives of this study are to develop the RF equation for atmospheric water vapour and to 
test the positive water feedback theory by applying the Ollila-2 model. 

2. Materials and methods 

2.1 Materials 

The temperature data are from NOAA (2025a), HadCRUT5 and HadSST.4.1 from MetOffice 
(2025), Berkeley (2025), and UAH (2025). The reflected shortwave radiation data for 1980 – 
2001 are from ISCCP (2025), and the TSI (Total Solar Radiation) variations from the data set of 
Dewitte et al. (2022). The radiation data from 2001 onward are from the CERES (2025) satellite 
observations. The Oceanic Niño Index  (ONI 2025) is from NOAA. In temperature simulations, 
humidity data are from NOAA (2025b) as well, and the GH gas concentrations are from NOAA 
(2025c). The RF equations for CO2, CH4, and N2O are from Ollila (2023b), and in the simple 
IPCC model, they are from the IPCC (2021). In LBL calculations, the Spectral Calculator tool of 
Gats Ins. (Gats 2025) was applied using the HITRAN database of version 2022 (HITRAN 2025).  

2.2 Spectral Calculator application 

Spectral Calculator of Gats (2025) has been used in LBL calculations to simulate water vapour 
and other greenhouse (GH) gas concentration changes. The high-resolution transmission molec-
ular absorption database of the Harvard-Smithsonian Center for Astrophysics (HITRAN 2025) 
was applied, which includes the water continuum model 2.52 MT_CKD of Mlawer et al. (2012). 
The polar summer profiles of the Spectral Calculator (Gats 2021) have been modified for temper-
ature, pressure, and GH gas concentrations to correspond to the Average Global Atmosphere 
(AGA) profiles.  These profiles have been tabulated in Appendix A, together with the global sin-
gle profiles calculated as the combination of different climate zones. Appendix B is a summary 
of the calculation capabilities of the Spectral Calculator. 

3. The radiative forcing of water vapour 

The RF values of water vapour were calculated by varying the water vapour concentration HTPW 
from 4 mm to 41mm, and the CO2 concentration from 330 ppm to 490 ppm. In the LBL calcula-
tions, the RF effects of water vapour are calculated based on the temperature, pressure, and water 
vapour concentration profiles of different climate zones, which are combined into one average 
climate atmospheric (AGA) profile. The HTPW value is a measure of the total water vapour amount 
in the atmosphere, which is available in atmospheric data sets (NOAA 2025a). 
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The calculations show that the impact of CO2 concentration was minimal. The RF effect between 
the 330 ppm and 490 ppm was only 0.04 Wm-2 on the RF value of water vapour. Since this is 
smaller than the estimated calculation accuracy, this effect was neglected. 

The RF curve of absolute humidity HTPW variation from 4 to 41 mm has been depicted in Fig. 3. 
The fitting according to the second-order equation is (coefficient units Wm-2, Wm-2mm-1, and 
Wm-2mm-2, respectively) 

 RF = -5.3526 + 1.5733 * HTPW - 0.0156 * HTPW
 2 [Wm-2]. (1) 

The coefficient of determination R2 is 0.9959, and the standard error of the fitting is 0.89  

Wm-2. 

 
Figure 3: The RF dependency RF according to the TPW values for the range from 4 mm to 41 mm. The 
dotted curve is the fitted curve.  
 

Since the HTPW range in the average global climate is much smaller, another equation was calcu-
lated applicable for the HTPW range from 20 mm to 30 mm, which has been depicted in Fig. 4. 

 

Figure 4: The RF dependency RF according to the TPW values only for the narrow range from 21.0 mm 
to 29.5 mm. The dotted curve is the fitted curve.  
 

This fitting has a logarithmic dependency (coefficient units Wm-2, and Wm-2 mm-2, respectively): 

 RF = -35.304 +18.435 * ln(HTPW/1 mm) [Wm-2]. (2) 

The dependency, according to equation (2), is practically linear, its coefficient of determination 
is R2 = 0.9999, and the standard error of the fitting is 0.034 Wm-2. These equations can partially 
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explain why water vapour is a much stronger GH gas than CO2.  The strengths of water and carbon 
dioxide can be compared to each other in Fig. 5. 

 
Figure 5: The absorption graphs under different atmospheric conditions for  average global atmospheric 
(AGA) conditions, when the surface temperature is 16.3ºC (289.5 K ). The CO2 of 280 ppm (light green 
solid curve) and 560 ppm (dotted dark green curve) have been calculated, when CO2 is the only GH gas 
in the atmosphere. The water vapour graphs of 4.2 TPW mm (purple curve), 26 mm TPW (blue curve), 
and 41.2 TPW mm (yellow curve) have been calculated under AGA conditions. The total absorption 
graphs (grey and red curves) have been calculated under AGA conditions. The emission graph corre-
sponds to the surface temperature of 16.3 °C, assuming the emissivity factor to be 1.0.  
 

Fig. 5 illustrates the dominant role of water vapour under the average atmospheric conditions 
(AGA). Under tropical conditions, the role of CO2 is insignificant, which can be noticed by com-
paring the water absorption curve (yellow) and the CO2 absorption curve (green) to each other. 
The same conclusion can be drawn from total absorption curves when the CO2

 concentration in-
creases from 280 ppm (black curve) to 560 ppm (red curve). This means a minimal warming 
effect of increasing CO2 concentration in the tropical climate zone. Water vapour does not de-
crease significantly even in tropical conditions since its absorption increases in the wavelength 
zone of 7 µm - 14 µm, where the absorption effects of increasing CO2 concentrations are much 
smaller.  

4. Verification and validation 

4.1 Verification of LBL calculations 

The validations of LBL calculations are not possible due to the too-small temperature effects 
under real climate conditions, but verification tests are possible.  

Ollila (2023b) has shown that the LBL calculations carried out under average atmospheric condi-
tions of 2008 – 2014 (detailed in Appendix C) resulted in the OLR flux of 272.0 Wm-2 for the 
clear sky, which is almost the same as the CERES observed flux of 272.6 Wm-2 during the same 
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period (Huang and Chen 2020). The GH gas effects can be found to be in the same wavelength 
zones in both the calculated and the satellite-observed jagged curves. These results show that LBL 
calculations of this study are reliable, and the correct atmospheric composition has been applied. 

4.2 The simple climate models applied in temperature simulations 

Three different simple climate models have been applied to temperature simulations, and they 
have the same common features, but the RF and temperature calculations are different. 

The positive water feedback can be tested by applying simple climate models. In this study, a 
simple climate model has been applied as defined by IPCC (2013) on page 664  

 dTs = λ * RF, (3) 

where dTs is the global mean surface temperature change, and λ is the climate sensitivity param-
eter. The warming impacts of climate drivers, which are in this study, ASR, and GHGs, including 
also water vapour, can be added together. This simplification is justified for simulations based on 
the graphs of Fig. 7.8 of the AR6 (IPCC, 2021), which show that the warming impacts of tropo-
spheric aerosols, halogenated gases, ozone, and volcanic aerosols have been essentially constant 
during the 2000s. 

The dynamic delays of RF values have been calculated by applying the first-order dynamic mod-
els as specified in the studies of Ollila (2020; 2021; 2023a). In this study, all the variables and the 
observed temperature were normalised to zero temperature effect for the period of 2003-2008. 

The essential difference between the Ollila models and the IPCC simple model is the value of λ. 
The warming values of all climate drivers tabulated in Figures 7.6 and 7.7 in AR6 (IPCC 2021) 
are possible if the λ value of 0.47 K/(Wm-2) has been applied, which means the use of positive 
water feedback in the original GCM calculations. 

The λ without water feedback can be calculated from the energy balance of the Earth (Ollila 
2023b) according to the equation 

 λ = T/(SC(1-α)), (4) 

T is the emission temperature of the OLR radiation, SC is the solar constant, and α is the total 
albedo of the Earth. By applying the average CERES (2025) OLR flux values for the period 2008 
- 2014, the SC is 1360.04 Wm-2, α is 0.2916, and λ is 0.265 K/(Wm-2). The λ value can be calcu-
lated for each month according to Eq. (4), and this has been applied in simulations of this study.  

In the earlier model Ollila-1 (Ollila, 2021), the warming impact of the ENSO (El Niño and South-
ern Oscillation) effect was calculated by the equation first introduced by Trenberth and Fasullo 
(2013) 

 dTENSO = 0.1 * ONI, (5) 

where dTENSO is the warming impact of the ENSO phenomenon applying a 5-month delay, and 
ONI is the Oceanic Niño Index (ONI 2024). In the Ollila-2 model, the ENSO effect has been 
replaced by the warming impact of water calculated on the HTPW basis and possible absorbed solar 
radiation (ASR) impacts.  

In both Ollila models, the radiative forcings of CO2, CH4, and N2O have been calculated by the 
equations developed in the study of Ollila (2023b), and the same in the IPCC simple model are 
calculated using the equations of AR5 (IPCC 2013). The differences in the RF values of CH4 and 
N2O are insignificant in these two cases. 

In the temperature simulations, first-order dynamic models have been applied. The dynamical 
time constants for the ocean have been 2.74 months and for land 1.04 months (Stine et al. 2009). 
The responses of first-order dynamic models can be calculated in the discrete form by applying 
the so-called z-transform, which enables continuously changing input variables. 
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4.3 Water vapour warming impacts during the yearly temperature cycles 

The temperature of the Earth varies in the same way each year on both hemispheres. Only after 
2020 has the NH temperature been increasing more rapidly than the SH temperature, and the 
reason is probably the ASR increase due to cloud cover changes on the NH hemisphere (Hansen 
et al., 2025). The variation is much greater than the temperature anomaly measurements indicate. 
The global absolute temperature varies from about 12.5 °C to 16.0 °C. The variation in the north-
ern hemisphere (NH) is much greater, from about 9.5 °C to 22.0 °C, but in the southern hemi-
sphere (SH), from about 10.0 °C to 16.0 °C. These observed temperature graphs have been de-
picted in Fig. 6, as well as the simulated temperatures by the Ollila-2 model. 

 
Figure 6: The graphs of the observed (NOAA, 2025b) and simulated temperature yearly changes of NH, 
SH and the whole Earth by the Ollila-2 model. A one-month delay in temperatures from February to 
June due to the melting of ice and snow cover has been applied in the simulated NH temperatures.
  

The graphs show that the Ollila-2 simulates the temperatures very well, even though the simula-
tion step is relatively long, with one month. The maximum global temperature normally happens 
in July, even though the globe receives about 22 Wm-2 more total solar radiation (TSI) in Decem-
ber-January than in June-July. Another decisive factor is the ratio of ocean and land. In the NH, 
the portion of the sea is 69 %, but in the SH it is 81 %. This means that the temperature variation 
is much smaller in the SH. 

Since the dynamic delays and time constant differ between the hemispheres, the global tempera-
ture simulations have been carried out separately for both hemispheres, and the global simulation 
is the sum of these simulations (Fig. 7). The humidity changes, which should cause the positive 
water feedback, are fast changes happening at the same speed as the temperature changes. 

 
Fig. 7: The graphs of the observed (NOAA) and simulated temperature anomalies of the globe. 

Also, the temperature impacts of ASR and water vapour (HTPW) have been depicted. In Fig. 7, it 
can be noticed the fact that the ASR is the dominating climate driver of the Earth. The yearly 
temperature effect of GH gases according to IPCC science is only about 0.02 °C, and that is why 
it has not been depicted. The major finding of these simulations is that the temperature effect of 
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water vapour variations is only from 12.8 % to 14.5% in addition to the ASR warming effect. 
This result is practically the same as that found by Harde (2017), that the water vapour feedback 
increases the climate sensitivity of the CO2 impact by about 14 %. According to the positive water 
feedback theory, it should be about 100 %. 

4.4 Temperature and radiation trends from 1980 onward 

The paradigm of the IPCC has been that GH gases are the climate drivers since industrialisation 
started in 1750.  The temperature effect of GH gases, according to the IPCC, has been depicted 
in Fig. 8, and it has a similar linear trend as the global temperature.  

Figure 8: The temperature trend from 1980 to 2025, together with the ASR radiation trend and the 
temperature effect of GH gases according to the IPCC. 

  
On the other hand, the ASR trend has the same kind of linear trend. The fluctuations of the ASR 
are very great based on the ISCCP data from 1983 to 2001, but the fluctuations are much smaller 
during the CERES satellite measurement period, which started in 2001, indicating a better meas-
urement accuracy. It means that further analyses are needed to find out the roles of GH gases and 
the ASR changes in global warming. 

4.5 Water vapour warming impacts during the 2000s 

The water feedback theory can be tested between 2001 and 2024, when the most accurate obser-
vations are available. It can also be expressed in the form that any surface temperature increase 
should include a water vapour impact corresponding to about 50 % of the total change. The tem-
perature and humidity observations have been depicted in Fig. 9 together with major variables. 
During this short simulation period, the ENSO warming impacts must be included. The warming 
impact of ENSO originates from the absorbed solar energy, which is released in the El Niño phase, 
and then during the cooling period of La Niña, this energy is paid back. 

It is easy to notice that the 50 % temperature anomaly (dotted lilac curve) does not vary according 
to the temperature effect of GH gases as implied by the positive water feedback theory by the 
IPCC. It should be noticed that according to AR6, CO2 corresponds to about 80 % of the temper-
ature increase from 1750 to 2019 (IPCC 2021). By judging with the eye, the ASR & ENSO effect 
has had the dominant role in the temperature increase after the year 2014.  



A. Ollila: Radiative Forcing of Water Vapour and its Use in Climate Models 

Science of Climate Change https://scienceofclimatechange.org 

 198 

 

 

 Figure 9: The temperature effects of CO2, CH4, and N2O according to Ollila-2 (green solid curve) and 
IPCC models (dotted turquoise curve), water vapour (blue solid curve), and ASR+ENSO (brownish 
curve) have been depicted. The temperature anomaly (red curve) is according to the GISS (2025) data 
set calculated as a 5-month running mean. The lilac dotted curve illustrates the water vapour feedback 
effect caused by GH gases according to the C-C theory, which has doubled the original radiative forc-
ings, and it is 50 % of the temperature curve. The warming impacts of ENSO have been calculated by 
Eq.(5).  All variables have been normalised to zero in the period 2003-2008. 
 

One of the objectives of this study was to test the theory of positive water feedback. Two obser-
vation-based analyses have been carried out. The first one was the seasonal temperature variation 
analyses in section 4.3, which show that the HTPW temperature impact increases the absorbed solar 
radiation (ASR) effect by a factor of 1.14 and not by about 2 as assumed by the IPCC based on 
the C-C equation.  

The theory in this study has been that the HTPW variations depend on the primary energy changes, 
which were tested during the period from 2010 to 2025. The most important energy input is the 
ASR, which has increased by 2.01 Wm-2 from 2000 to the year 2023, which can be compared to 
the RF impact of 2.16 by CO2 from 1750 to 2019 (IPCC 2021).  The temperature effects of ASR 
and absolute humidity HTPW have been illustrated in Fig. 10. 

 

 

 

 

 

 

 

 

 

 
 
 

Figure 10: The trend curves of UAH temperature, the temperature simulations of the Ollila-2 model, 
and the temperature effects of  TPW absolute humidity, ASR & ENSO, and GH gases by the Ollila-2 
model

 
from 2011 to 2025. 
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The HTPW curve seems to correlate quite well with the ASR&ENSO curve. By judging with the 
eye, the HTPW changes do not correlate with the impacts of GH gases. The multicorrelation coef-
ficient of regression R2 for the period 2005-2024 is 0.756 between the water vapour (HTPW) and 
two variables, which are the temperature impacts of ASR&ENSO and the GH gases, according 
to the Ollila-2 model. The coefficient R2 of the model with only ASR&ENSO is only slightly 
smaller, 0.688. It means that the HTPW values depend mainly on ASR and ENSO, which are the 
primary energy inputs.  

The linear increases of temperature and HTPW temperature impacts from 2011 to 2025 are illus-
trated by the linear fittings of the actual trends in Fig. 10. The temperature increase has been 0.61 
ºC, and the temperature increase of HTPW impact has been 0.14 ºC, which means a 23 % feedback 
effect on the primary temperature drivers (mainly ASR and ENSO). It is more than 14 % as con-
cluded from the ASR impacts during the seasonal temperature changes in section 4.3. A plausible 
explanation is that during the period 2011-2025, there have been two strong climate disturbances, 
namely two very strong El Niños: 2015-2016 with an ONI value of 2.64, and 2023-2024 with an 
ONI value of 1.95. As found by Ollila (2020), about 50 % of the temperature effect of very strong 
El Niños results from the 100 % water feedback effect during these short-term intervals of about 
one year. These two strong El Niños have increased the average water feedback during this short 
period from its normal level 14 % to an observed value of 23 %. 

4.6 Temperature simulations of the 2000s 

The temperature simulations during the 2000s have been carried out by applying the Ollila-2 
model and the IPCC simple model (Fig. 11). 

Figure 11: The graphs of the Ollila-2 model and GISS temperature from 2001 to 2025. The warming 
impacts of the three major climate drivers of ASR, GHGs, and TPW have been depicted for the same 
period according to the Ollila-2 model, as well as the ENSO according to Eq. (5). The dashed black 
curve is the simulated temperature response applying the λ-value of 0.47 K/(Wm-2) according to the 
IPCC (2021).  
 

The overall response of the Ollila-2 model is very good in comparison to observed temperature 
changes. By comparing the water vapour trend changes to the ENSO temperature changes, it is 
obvious that the major part of the ENSO effect happens through the changes in the atmospheric 
humidity and ASR changes. It can be noticed that the warming impacts of GH gases are very low. 
The ASR flux changes have had a major role in the temperature increase after the very strong El 
Niño in 2015-2016. The HTPW values have stayed at a record level after the El Niño of 2023-2024, 
and it seems to be the main reason, besides the ASR, for the very high temperatures of 2023 and 
2024.  
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The temperature effects of the Ollila-2 model are based on the calculated RF effects of climate 
drivers. The effect of GH gases is minimal according to the RF values of both the Ollila-2 and 
IPCC simple models. The simulated temperature by the IPCC model starts to deviate from the 
observed temperature after El Niño 2015-2016. The reason is the increased ASR anomaly. Since 
the water feedback theory implies that water content should have a similar impact as the original 
ASR impact, the result is a far too high temperature response.  

It should be noted that nature cannot separate whether the ASR impact is due to solar radiation 
changes or the albedo changes. If these changes cause temperature increases, the water feedback 
theory of the IPCC implies that this mechanism doubles the temperature impact. The ASR in-
crease from 2011 to 2019 was 1.29 Wm-2 according to CERES (2025) observations, which would 
increase the temperature by 0.6 ºC to about 1.9 ºC according to the IPCC science as described in 
section 1.3 (equation (3) with a λ value of 0.47 K/(Wm-2). Maybe this is a reason why there is no 
ASR anomaly impact in Figure 7.7 of AR6, since the GCM-calculated temperature would deviate 
significantly from the observed: 1.9 ºC versus 1.29 ºC. Another good reason is that the GCMs are 
not capable of calculating an ASR impact through cloud property impacts on albedo.  This prob-
lem becomes even more distinct when thinking that the aerosol and cloud effect has decreased 
from -0.82 Wm-2 in 2011 to -1.00 Wm-2 in 2019 in Fig. 7.7 (IPCC 2021), but the real effect has 
been significantly positive as noted above.  By applying the real RF warming impact of water, the 
temperature follows the observed temperature very well. 

The correlation coefficient of the Ollila-2 model to the observed GISS temperature from 2005 to 
2024 is 0.82. The most realistic measure of the models is the Mean Absolute Error (MAE), which 
is calculated by the equation 

 MAE = ABS(dTO – dTC)/n, (6) 

where ABS is a function calculating the absolute error between the observed temperature anomaly 
TO and the model-simulated temperature anomaly TC, and n is the number of paired points. The 
MAE values calculated for the period from 2005 to December 2024 were 0.090°C for Ollila-2 
and 0.183 °C for the IPCC model. These MAE values have been calculated from the original 
monthly values, even though the graphs in Fig. 10 have been smoothed by applying running mean 
values. 

The greater MAE value of the IPCC model comes from the strong ASR flux increase after 2014, 
as noticed in Fig. 8, which overestimates the temperature response because of the water feedback 
mechanism of this model.  

5. Discussion and conclusions 

Water vapour is the most important GH gas since it has a major role in the GH effect. This effect 
varies based on the studies from 50 % (Schmidt et al. 2010) to 89-95 % (Koutsoyiannis 2024), 
and on the other hand, the CO2 effect also varies in broad limits from about 4 % - 5 % (Koutsoy-
iannis 2024) to 33 % (Pierrehumbert 2010) as surveyed in section 1.3. For some reason, the IPCC 
does not report these key figures at all. The RF value of the water vapour, depending on its con-
centration in the atmosphere, shows that it is practically linear in global concentrations without a 
strong decreasing RF effect like in the equation of CO2. This feature explains why water’s capa-
bility to absorb infrared radiation in the wavelength zone 12 µm to 19 µm almost nullifies the 
warming impact of increased concentration of CO2 in the tropics. The RF value equation of water, 
based on the HTPW values, gives the possibility to treat water concentration changes in the same 
way as the other GH gases. 

A rather solid conclusion of this study is that the HTPW value seems to depend on the primary 
energy variations of the Earth. During the relatively short period of 25 years of this study, the 
most important climate driver in this respect is the absorbed solar radiation (ASR) and its varia-
tions. The ENSO temperature impact acts in the same way as the ASR effect. Together, these two 
variables (ASR and ENSO) explain the temperature variations and the significant increase in 
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temperature of the 2000s. 

Water amplification could not be found in the case of GH gases, or it was insignificant, but only 
for the preliminary energy input changes, like ASR and ENSO. This result is not very solid con-
cerning the warming impacts of GH gases, since during this short period, the GH impacts are very 
small. Anyway, the maximum water feedback is only 14 % and not about 100 % for any climate 
radiative forcing. In practice, the best and simplest way to factor in the water feedback is to use 
the RF calculation based on the HTPW concentrations, since the water feedback is then automati-
cally calculated according to its real impacts. 

The ASR changes have been omitted in the GCM simulations of the AR6 (IPCC 2021) since these 
models have been constructed on the idea that ASR variations could be calculated through cloud 
property impacts. The simulation results of Ollila-2 simple climate models challenge the GCM 
models, which are based on the anthropogenic climate drivers only. Even though this is a short 
period, this model seems to give good results even when applied from the beginning of 1980. 

In the year 2023, the global temperature increased about 0.28ºC, but the GH gases showed only 
an increase of about 0.02 ºC. Probably considering this fact, Schmidt (2024) wrote that GCMs 
cannot explain the high temperature of the year 2023, and it means that we are in uncharted terri-
tory. This study suggests two simple corrective measures applicable in all GCMs, which are the 
use of observed absorbed solar radiation (ASR) values and the concentration of water vapour for 
the calculation of the RF values in the same way as for other GH gases. In this way, the simulated 
temperatures are close enough to observations even by applying simple models. 

The results of this paper challenge the water vapour feedback theory since the simulations show 
that the results using the RF of the water vapour are very good, instead of the water feedback 
theory of the C-C mechanism. It looks like the climate community is adhering to anthropogenic 
climate change, and they do not consider another paradigm, which leaves this question open for 
the time being. 
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Appendix A. The average climate profiles applied in the LBL calculations 

The climate zones are the five zones available in the Spectral Calculator application: tropical, 
midlatitude summer (ML-S), midlatitude winter (ML-W), polar summer (Polar-S), and polar win-
ter (Polar-W). US Standard (US Stand) is the average atmospheric condition above the USA con-
tinent, and it has not been applied in these calculations. The weighing factors in calculating the 
average global profiles are 0.391 for the tropics, 0.461 for the midlatitude zone, and 0.148 for the 
polar zone. The profiles have been tabulated to the average altitude of 11 km of the troposphere, 
since thereafter the climate zone differences are insignificant. 

Average global atmosphere - AGA 

Altitude Temperature Pressure Humidity 

km Kelvin mbar  g/m3 

0 288.23 1013.90 11.06 

1 283.68 900.23 7.36 

2 278.84 797.91 5.16 

3 274.45 705.34 3.33 

4 268.29 622.01 2.10 

5 262.00 547.05 1.24 

6 255.58 479.54 0.67 

7 249.10 418.88 0.36 

8 242.58 364.78 0.16 

9 236.31 316.37 0.05 

10 230.36 273.62 0.01 

11 226.02 235.71 0.00 

  Total, prcm 2.6 
 

Polar Summer (Polar-S) profiles have been applied in simulations. The water content of this cli-
mate profile has been adjusted by multiplying the profile values by 1.2384, which makes the total 
amount of precipitable water (prcm) 2.6 cm, which is the average water content of the atmosphere. 

Appendix B. The capabilities of the Spectral Calculator 

Ollila (2017) has calculated the global total absorption value using these five different climate 
zones to be 307.53 Wm-2 in the troposphere. The same value applying the adjusted Polar summer 
profiles is 305.98 Wm-2, which is only 0.5 % smaller. It can be estimated that this small difference 
does not affect RF calculations. Since the one profile calculation is so close to the five profile 
results, it is justifiable to use it in all LBL calculations in this study.  

The Spectral Calculator LBL code, together with the HITRAN (2024) database, has been applied 
in numerous calculations without finding any problems or errors according to Gats (2024). The 
number of spectral lines originates from the HITRAN database, and spectra up to one million 
points can be calculated.  The atmosphere is modelled as graduated concentric spherical shells. 
The number of shells depends on the path length and altitude range. For example, a path from the 
ground to 120 km (the top of our Spectral Calculator atmospheres) is split into 19 shells: 250 
meters thick at the surface, growing to 10 km thick at high altitudes.  

The author has applied this tool for calculating the CO2 contribution in the GH effect by applying 
the US Standard Atmosphere 1976 with 12% water reduction, and the result is 27%, almost the 
same as the 26% calculated by Kiehl and Trenberth (1997) with the same atmospheric conditions. 
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Schmidt et al. (2010) have calculated that the CO2 contribution to the GH effect is 14 % corre-
sponding to 21.7 Wm-2 absorption, and the same figures of the author applying the Spectral Cal-
culator are 12.7 %  / 20.1 Wm-2 using the GH effect magnitudes of 155 and 157.7 Wm-2, respec-
tively. Also, the total LW absorptions according to the altitude with the Spectral Calculator are 
the same as reported by Ohmura (2001): 1 km 90 %, 2 km 95 %, and 11 km 98 %.  

The average global cloud layer is at an altitude from 1.5 km to 4.1 km (Wang et al., 2000), and 
the LW absorption by CO2 has been completed below 1 km (Ollila, 2017). Thus, clear sky LW 
radiation reduction for a specific CO2 concentration is accurate enough for the cloudy sky reduc-
tion, but the reduction of OLR flux due to cloud absorption is needed, which is proportional to 
OLRclear according to the coefficient Rc.  

Appendix C. The atmospheric conditions applied in the LBL calculations 

In this study, the radiation flux of the clouds and the CERES (2024) data have been applied as 
reference material during the pause period from 2008 to 2014. This period has been selected since 
there are no exceptional climate events, and it is long enough for filtering out small devia-
tions. The total precipitable water (TPW) amount has been 2.6 cm, carbon dioxide 393 ppm, me-
thane concentration 1.803 ppm, and nitrogen oxide concentration 324 ppb at the surface level. 

The surface-emitted LW flux is 398 Wm-2 according to the Earth’s energy balance, applying the 
CERES radiation flux data (Wild et al., 2013). This flux value corresponds to Planck’s tempera-
ture of 16.3 °C. Huang et al. (2018) have analysed five sea surface temperature (SST) datasets. 
During the pause from 2000 to 2014, the SST values varied from 18.1 °C to 18.5 °C. Since the 
oceans cover 70 % of the Earth’s area, it means the real surface temperature is essentially higher 
than 15 °C, normally used as the global temperature estimate. The cloud fraction of this period 
has been 0.674 (CERES, 2024). 

The average CERES observed OLR values in Wm-2 for this period are 240.038 for all-sky and 
267.940 for clear sky, and the cloud fraction has been 0.674. The cloudy sky value is not readily 
available, but it can be calculated using the equation of Bellouin et al. (2003): 

OLRall-sky = 0.674 * OLRcloudy + 0.326 * OLRclear                                    (a)    

According to this equation, OLR for a cloudy sky is 226.54 Wm-2. The clear sky flux of 268  
Wm-2 at the TOA is the sum of 186 Wm-2 radiated from the atmosphere and 82 Wm-2 transmitted 
through the atmosphere. When the sky turns from a clear sky to a cloudy sky, the changes in 
radiation fluxes happen immediately. The transmittance flux of 82 Wm-2 disappears, and the at-
mosphere-radiated OLR of 226 Wm-2 becomes about 15.5 % smaller than the same of clear sky. 
This change is caused by the LW radiation absorption by clouds, which has an essential role in 
the GH effect. 

The accurate ratio of OLRcloudy to OLRclear during the period 2008-2014 is 0.8455, which has been 
marked by Rc in this study. The author has used Rc in calculating the cloudy sky OLR values from 
the LBL calculated OLRclear values, which are needed in RF calculations of CO2. 

The absorption effect of CO2 happens below the 1 km altitude since the CO2 is so a strong ab-
sorber in its waveband zone. The global surface temperature of cloudy sky conditions is about 0.1 
°C higher than the all-sky conditions (Zhang et al., 2004). The explanation is that the reradiation 
from clouds increases more than the SW radiation to the surface decreases during relatively short 
periods of cloudy sky conditions (about two days of three are cloudy). 
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Abstract 

The impression is gained that there is still no conclusive physical description of the global behav-
ior of CO2 absorption/emission in the various reservoirs. There is a growing group that is con-
vinced, the residence time of CO2 in the atmosphere is approximately 4 years. Another group 
assumes a significantly longer residence time of 30 years or more. Finding a common consensus 
between both sides appears difficult. 

An attempt is made here to provide an approach. It can be viewed as a complement to other articles 
recently published in Science of Climate Change. We assume that there is a regular exchange of 
CO2 between the reservoirs, both in terms of absorption and emission. Without anthropogenic 
emissions, absorption and emission balance each other. 

The approach assumes an equilibrium of CO2 concentrations between the various reservoirs. Any 
additional amount of CO2 introduced into the system is distributed in a constant ratio among the 
reservoirs.  

 

Keywords: e-time τ; global carbon cycle; absorption SLAND and SOCEAN.; CO₂-equilibrium and 
equivalence principle, communication tubes  
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1. Introduction 

Most scientists represented by the IPCC believe that the CO2 increase from 280 ppmv to 420 
ppmv is solely anthropogenic, justifying this with a residence time according to the Bern Model. 

However, in recent years, a growing number of scientists (Roth [1], Berry [2], Schrijver [3]) have 
cast doubt on this view, especially since the Bern Model contradicts the Equivalence Principle 
[12] and has no physical basis. The IPCC's previous predictions have never come true. 

Prof. Feynman once taught: If the prediction is wrong, the assumption is necessarily wrong. The 
assumption that 50% of anthropogenic emissions remain in the atmosphere must therefore also 
be questioned.  

This statement addresses two points. 

1. The evidence provided by Mueller [5] that the absorption of the oceans and land areas rela-
tive to the CO2 concentration has been constant for 270 years, has several implications. 
Firstly, according to the Equivalence Principle [12], anthropogenically produced CO2 has the 
same residence time as natural CO2. Secondly, the result can be determined as a state of 
equilibrium between the Earth's reservoirs. 

 

2. Due to this state of equilibrium between the atmosphere, the ocean, and biomass, the as-
sumption that a stable atmospheric CO2 concentration can be maintained if anthropogenic 
CO2 emissions are halved is untenable. Any additional amount of CO2 introduced into the 
system is distributed in a constant ratio among the reservoirs. 
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In this article, I base my analysis on the statistical analysis of the constancy of ocean absorption 
and land biomass according to Müller [5]. This demonstrates the equilibrium state in the Earth's 
CO2 system. On the other hand, since CO2 concentrations have increased by 50% since 1850, but 
the equilibrium has been maintained, it must be possible to draw conclusions from this. 

2. On the Absorption of Reservoirs 

The absorption of CO2 in the ocean and in biomass is constant relative to the respective CO2 
concentration in the atmosphere. This demonstrates the validity of Henry's Law for the ocean and 
the linearity of plant growth with atmospheric CO2 concentrations up to 450 ppmv (Hamburg 
Education Server [6]) (see Fig. 2). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Fig. 1: The relative total absorption on ocean and on land stays constant over 270 years [5]. 

According to the IPCC AR6 [7] Chapter 5 Fig. 5.12, at the beginning of industrialization, the CO2 
concentration was 278 ppmv or 591 GtC. IPCC says, the e-time (equal to residence time) is about 
4 years, corresponding to a total annual emission of approximately 165.9 GtC/a. Today, we have 
50% more CO2, which is 420 ppmv or 890 GtC. In IPCC AR5, WG1 Chapter 6, p. 472, Box 6.1 
the residence time for the anthropogenic component is within several decades and a few thousands 
of years. Many scientific theories propose an e-time of 30 years. 

This means, however, if the 591 GtC in 1750 have a residence time of less than 4 years in the 
atmosphere (165.9 GtC/a according to the IPCC [7]), the anthropogenic 298 GtC (889 GtC – 591 
GtC) remain with a residence time of 30 years, i.e., an annual absorption of 11 GtC/a. We should 
therefore have a total annual absorption of 165,9 GtC/a from the old stock and 11 GtC/a from the 
anthropogenic 289 GtC, a total of 176,9 GtC/a plus new emissions. (According to the IPCC, the 
emission in 2020 is approximately 216.2 GtC. With this value, the residence time would have to 
be approximately 4 years.) 

This contradicts the proportionality of Henry's Law and the measured higher biomass, which is 
also approximately proportional to CO2 concentration. Despite a 50% higher partial pressure, ab-
sorption would be almost constant (from 165,9 GtC to 176,9 GtC) over 30 years with residence 
time τ = 30 years. The assertion that the anthropogenic CO2 content remains in the atmosphere 
longer than the natural CO2 content thus rejects Henry's Law, as well as the linearity of CO2 
absorption by plants in relation to CO2 partial pressure. However, both phenomena are scientifi-
cally recognized. 

With a 50% higher partial pressure, according to Henry's Law, the oceans would have to emit and 
absorb 50% more. The oceans account for approximately 32% of global emissions. In 1750, the 
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oceans (SOCEAN) absorbed approximately 54.8 GtC/a, and the biomass/land (SLAND) absorbed 
111.1 GtC/a. (see IPCC Chapter 5 Figure 5.12 [7]). For reasons of proportionality, an additional 
CO2 exchange of approximately 27.4 GtC/a would have to occur from the oceans (the IPCC is 
correct here), resulting in a total CO2 exchange of the ocean of approximately 82.2 GtC/a. 

Table:1 Absorption by SOCEAN and SLAND  according to the principle of proportionality. 

Absorption (GtC) 1750        2020   

SOCEAN  54,8 82,2 

SLAND  111,1 166,6 

Total  165,9 248,8 

Due to the higher biomass according to NASA and Tiexi [8] of at least 44% by 2016, an additional 
SLAND emission of 48.8 GtC/a would have to occur. For 2020, we also assume 50% for propor-
tionality reasons, which would then be 55.5 GtC (although the IPCC only reports 29 GtC) – to-
gether with the current figure, this would amount to 166.6 GtC/a. Therefore, SLAND + SOCEAN is 
166.6 GtC/a + 82.2 GtC/a = 248.8 GtC/a. 

If these assumptions are incorrect, the following is true: Since the biomass has clearly increased 
significantly according to several scientific reports, the only option is a correction of Henry's Law 
– or the residence time is not constant. In this case, the measurement data from the Global Carbon 
Budget must be questioned. For example, if biomass did not increase by 50% but only by 35% 
with a 50% increase in CO2, then in Fig. 1 SLAND would have to decrease by 1.5% to about 14% - 
which is obviously not the case. 

 

Fig. 2 the increase of C3-plants for 280 ppmv to 400 ppmv is up to 35% C4-Plants up to 55%, proofed 
by Taylor et al.[9]. 
 

This results in an average residence time, including the 298 GtC from anthropogenic emissions, 
of less than four years. A residence time of anthropogenic emissions of 30 years or more is there-
fore invalid. 

Let's examine the sources of anthropogenic emissions in more detail. If the anthropogenic share 
is defined as EFF(10 GtC) + ELUC(3 GtC) + EBMV(14 GtC), then this requires an additional annual 
emission of 27 GtC/a for 2020, or a total of 248.8 GtC/a + 27 GtC/a = 275.8 GtC/a. Fossil emis-
sions therefore account for 4% of total emissions, while total anthropogenic emissions amount to 
10.8% of total emissions. 

Definition and Datasource – Skrable [4], Global Carbon Budget, 2021[10]: 
EFF: Human Carbon is from burning carbon fuels and producing cement 
ELUC: Land Carbon is from human-caused land-use-change 
EBMV: Burned Biomass caused by human activity  
EOT: Emission by ocean temperature increase 

As explained in Müller [5], the absorption rate relative to the partial pressure has remained con-
stant for 270 years in both the ocean and the land. We therefore have a constant equilibrium 
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between ocean, land, and atmosphere, similar to communicating tubes. Of the 27 GtC/a emissions, 
4.4 GtC/a remain in the atmosphere, 7.3 GtC/a enter the ocean, and 15.3 GtC enters the bio-
mass/land. However, according to the Mauna Loa database, an average of 5.2 GtC remained in 
the atmosphere annually between 2010 and 2020. 

The claim that the airborne fraction of approximately 50% of anthropogenic emissions remain in 
the atmosphere is misleading. Compared to the natural equilibrium, in addition to purely fossil 
emissions EFF, there are additional emissions (ELUC + EBMV). Strictly speaking, this also includes 
EOT, the additional outgassing of CO2 from the ocean due to its warming according to Henry's 
Law (approximately 5 GtC in 2020). With the same ratio, the theoretically remaining portion in 
the atmosphere agrees with the measured values from Mauna Loa. 

3. The Net-Zero Thesis 

If – as preferred in public debate – EOT, ELUC, and EBMV are attributed to natural CO2 sources (as 
is the 1 GtC produced by the respiration of 8 billion people), and only fossil emissions are con-
sidered as an increase in CO2 concentration, one could argue: 

The annual increase in atmospheric CO2 concentration (assuming fossil emissions of 10 GtC/a) 
in recent years has been 2.44 ppmv, or 5.2 GtC/a. It is claimed that keeping the current carbon 
concentration constant would be possible, if we reduced fossil emissions from 10 GtC/a by 5.2 
GtC/a. Total anthropogenic emissions should therefore remain at 4.8 GtC/a. The current CO2 
concentration in the atmosphere would then remain constant, with the excess being absorbed by 
the ocean and the biosphere. 

This means that there is no equilibrium between all three reservoirs. This, however, contradicts 
the equilibrium principle between the three reservoirs described above, as well as Henry's Law 
and the linearity principle of biomass growth. The equilibrium principle implies that a portion of 
each additional emission remains in the atmosphere. 

Summary: 

The following statement is false: 

With an annual additional anthropogenic emission of 10 GtC, 5.2 GtC/a remains in the atmos-
phere, 3.3 GtC is absorbed on land, and 1.5 GtC in the ocean. 

The correct statement would be: the total non-natural emissions from the disturbed equilibrium 
are the above 27 GtC + 5 GtC from EOT. So 32 GtC. Of this, 5.2 GtC remains in the atmosphere, 
18.2 GtC on land, and 8.6 GtC in the ocean. 

The constant ratio of the distribution is thus 16.25% : 56.87% : 26.88%. 

The soil's CO2 budget has not yet been taken into account. As of 2020, it contains 1500 GtCO2 
(410 GtC).  

4. Carbon Balance Compared with Data from the IPCC and Global Carbon Budget  

If we combine Tayler's study[9] for a 30% increase in biomass from 1850 to 2000 with Tiexi's 
[8] new study of a 14% increase between 2000 and 2016, we have a biomass increase of at least 
44%. (1% per year). For 2020 – here the data apply to the ocean, and C(2020) = 420 – we propose 
a 50% increase with a linear absorption in the ocean and land. 

With the following assumptions, according to the IPCC: 

In 1750: The atmosphere had 591 GtC. For respiration, see Table 1. Biomass was 520 GtC (IPCC 
indicates between 450 GtC and 650 GtC), and the residence time is less than 4 years. The surface 
ocean had 900 GtC in 1750. 

In 2020: The atmosphere had 889 GtC. The land biosphere probably has 780 GtC today (+50%). 
Since absorption remained constant at SLAND (see Figure 1), it follows that land biomass must 
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have increased by 50%, i.e., by 260 GtC. 

According to the author’s theory, the surface ocean has absorbed 50% more, or 450 GtC, of which 
a portion has entered the deep sea. A calculation based on the respective Revelle factor (Müller 
[5]) gives approximately 110 GtC (24%). This leaves 1250 GtC in the surface ocean. The total 
increase in all four reservoirs by 2020 was 298 GtC + 260 GtC + 340 GtC + 110 GtC = 1008 GtC. 

However, only 463 GtC were emitted anthropogenically from fossil fuels by 2019. This is 45% 
of the carbon balance.  

Table 2: C-Budget 

Absorption 
GtC 

C-Budget   
1750 

Sur Plus    
2020 

  SOcean  900 340 

  SLand  520 260 

  SAir  591 298 

  SDeep Sea  37100 110 

  Total  39111 1008 
 

The IPCC and Global Carbon Budget provide different figures: 

IPCC: 
Atmosphere +279 GtC, Biosphere +239 GtC, and Deep Sea +173 GtC equals 691 GtC.  
No data is available on absorption in the ocean. 

 

Global Carbon Budget: 
The Global Carbon Budget reports total emissions from EFF and ELUC as 463 GtC + 195 GtC 
= 658 GtC. This results in a deficit of 350 GtC to 545 GtC. 

5. Summary 

Both the total CO2 emissions reported by the IPCC for 2020, as well as the biomass increase and 
increased CO2 absorption by the oceans, rule out a residence time of anthropogenic CO2 of more 
than four years. 

The principle of equilibrium between reservoirs does not allow for the net-zero thesis. Any addi-
tional CO2 inputs are distributed among the reservoirs in a fixed ratio. 

The question also arises as to why, according to the Global Carbon Budget 2023, the ocean has 
absorbed so little CO2, which contradicts Henry's Law. 

Furthermore, the above considerations raise the question, where 500 GtC come from. This does 
not take into account the change of CO2 stored in the upper soil layer. EBMV and EOT could explain 
a part of it. 

We therefore know that the IPCC's assumptions and fundamentals are wrong. But we also know 
that many unanswered questions remain. 

The share of biomass in atmospheric CO2 in 1850 was approximately 66%, or 182 ppmv. A 50% 
increase would add up to an additional 90 ppmv. A 1°C warming of the ocean as well as soil 
respiration could explain the shortfall to 140 ppmv. The discussion about CO2 would then be 
irrelevant.  
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Abstract 

This commentary is a conflation and revision of the author’s essays previously published in the 
American Thinker and the Washington Times. To counter climate anxiety, this treatise reflects the 
limited predictions of climate models, particularly the atmosphere’s temperature profile, where 
models are not merely uncertain but also show a common warming bias relative to observations. 
Also, regarding the physics, how precipitation will change with warming is not sufficiently un-
derstood. This suggests that models can seriously misrepresent certain fundamental feedback pro-
cesses. 
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Commentary 

Terror in the troposphere is alive and well on US college campuses as revealed by former vice-
president Kamala Harris during an October 2025 interview.  According to Ms. Harris, her god-
daughter, a junior in college, was experiencing climate anxiety, as were other students on cam-
puses in the US and abroad. 

The angst is not surprising. For decades, the narrative of impending global climate catastrophe 
has trudged ahead nearly unimpeded through academia. Politicians and professional societies 
joined the steady march along the way. Mainstream media dutifully disseminated the descending 
doom. 

However, now a broader, less frightening view of the climate is emerging as a perspective that 
challenges the climate story status quo is gaining more attention. 

For instance, more of the public are learning that the claimed and predicted global climate calam-
ities are considerably overblown. (Note the recent epiphany of philanthropist Bill Gates, who 
according to the Associated Press (AP), still "thinks climate change is a serious problem but it 
won’t be the end of civilization." Mr. Gates is refocusing his attention on the critical matter of 
reducing human suffering (McDermott, 2025). 

The overestimation is because a large part of the airy disaster saga can be found in its edifice 
fashioned by modelling. In science, modelling produces a tentative representation of an observa-
tion or condition based on interpretation of available information. 

Atmospheric modelling is typically of the mathematical kind. Such modelling involves sophisti-
cated equations which necessitate assumptions and limitations and contain measured and approx-
imated input quantities. 

Most of my forty years of professional practice encompassed mathematical modelling of the 
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dispersion of air pollutants. The air pollution models combined sources of contaminants (indus-
trial smokestacks) with adverse weather conditions (stagnant air) and critical receptors (vulnera-
ble communities) to produce a reasonable estimate of worst-case air pollution impacts. 

This sort of modelling focused on predicting harmful effects over relatively short time frames 
(hours to one year) and on tight space scales (dozens of square meters to several square kilome-
ters). 

Compare this example of small-scale weather simulation to its large-scale global climate ana-
logue. 

Both modelling methods attempt to faithfully replicate reality. And as understanding of the at-
mosphere increased and computer capacity expanded, both methods yielded dramatically im-
proved outcomes. Both rely on careful, unbiased observations and interpretations of adequate 
scientific data. And both produce useful results to guide decisions involving public health and 
safety. These are some of the positive portions of modelling. 

There are some negative parts.  

Models typically lack adequate spatial resolution to capture small but potentially critical aspects 
of the atmosphere. Spatial inadequacy includes not just horizontal stretches across the earth’s 
surface but its vertical expanse as well. And, within this three-dimensional space, constant 
changes are occurring with temperature, moisture, wind, pressure, and energy.  

Lack of complete information and knowledge of the chemistry and physics of the air leads to 
serious uncertainties of future conditions. This is true for small-scale air-pollution modelling and 
even more so for global climate modelling. The atmosphere is inherently complex as is its mod-
elling and the increase in time and distance affects forecast accuracy. 

Yet, although changes that occur in the atmosphere occur in three dimensions, so much thinking 
on climate change happens on a two-dimensional level. 

Certainly, academic and government studies delve into the dimensional complexity of the airy 
environment, but the study results seem to be delivered and interpreted in a simplistic way. 

Take climate conclusions derived from the U.N. Intergovernmental Panel on Climate Change 
(IPCC) report. The IPCC report is the bible of climate change collective wisdom and its latest 
edition is the Sixth Assessment Report (AR6). 

The synthesis of the full lengthy report to AR6 was released March 2023. And even though there 
are thousands of pages of mainly technical material including peer-reviewed references in the full 
multi-year state-of-the-science AR6, the relatively brief synthesis is typically heavily influenced 
by politics, highlighting the governmental portion of the Intergovernmental Panel on Climate 
Change. 

From the skewed IPCC synthesis reports and similar politically biased narratives, many in the 
public, politicians, and news media conclude: 

The Earth’s air temperature is rising to dangerous levels; this rise is mainly due to increas-
ing levels of carbon dioxide in the atmosphere; the release of carbon dioxide by burning 
fossil fuels must end, as soon as possible; without cessation of fossil fuel use, much of life 
on Earth will die.  

Some form of this “settled science” diatribe has been repeated almost ad nauseum for decades. 
Schooling from K-16 and into graduate education has been saturated with this mantra. Neverthe-
less, the reality of atmospheric science is far from this “two-dimensional” thinking. What is actu-
ally known is not so simple nor settled. 

Like the air itself, a third dimension must be added to common climate-change thinking that in-
cludes the depth of the atmosphere. 

This expanded, three-dimensional perspective derives from atmospheric modeling which is used 
to explore the dynamics of the global air and to forecast its future conditions. But even sophisti-
cated mathematical climate modeling still lacks sufficient equations to match actual climate 
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conditions. 

The mismatch between model output and reality is recognized in A Critical Review of Impacts of 
Greenhouse Gas Emissions on the U.S. Climate, a July 2025 US Department of Energy report 
authored by five accomplished professionals in the fields of atmospheric science, physics, and 
economics. Although this document is facing challenges, its section on the “Vertical temperature 
profile mismatch” alerts the reader not only to the dramatic mismatch between model results and 
actual measurements, but also the fact that the atmosphere is three-dimensional and more complex 
than most people realize. Thus: 

“[t]he atmosphere’s temperature profile is a case where [climate] models are not merely 
uncertain but also show a common warming bias relative to observations. This suggests 
that they misrepresent certain fundamental feedback processes” (US DOE, 2025). 

My own peer-reviewed research which included 30-years (1991 - 2020) of low-level temperature 
conditions derived from southwest Pennsylvania twice-daily balloon-launch data confirms that 
changes in the lowest layer of the Earth’s air defy incontrovertible conclusions. My study inves-
tigated atmospheric changes that impact the dispersal of air pollutants near the ground (Sadar, 
2022, with additional discussion in Sadar, 2024). 

These changes also relate directly to climate change mechanics because changes to the trends in 
near-surface temperature along with moisture content have a profound effect on the Earth’s hy-
drologic (water) cycle. 

Notably, perhaps the most uncertain of the feedback processes mentioned in the Critical Review 
is related to the water cycle. 

Water in all its forms -- as solid ice and snow, as liquid cloud droplets, precipitation, and fog, and 
as invisible vapor -- continuously cycles its modes and in the process absorbs or releases energy. 
Water vapor and clouds account for most of the greenhouse effect. 

In the recent book Climate and Energy: The Case for Realism, one of the US DOE Critical Review 
authors, climatologist Roy Spencer, noted that precipitation processes that restrict the accumula-
tion of water vapor in the atmosphere: 

“are not known in enough detail to predict how the weak direct-warming effect of [carbon 
dioxide] will be either amplified or reduced by precipitation limits on water vapor. Climate 
models only crudely represent the conversion from water vapor to precipitation…. The 
actual physics that will determine how precipitation will change with warming are not even 
understood, let alone represented in climate models” (Beisner et al., 2024). 

Clearly there is still a lot to be investigated about the workings of the atmosphere. And nuanced 
science must continue to be disseminated and understood regardless of politicized storylines that 
imply two-dimensional simplicity to the three-dimensional complexity of the climate.  

Regardless, models as sophisticated tools in the scientist’s toolbox are enormously beneficial. Air 
dispersion models have helped us to understand and reduce air contaminant concentrations. Cli-
mate models have greatly improved awareness of atmospheric dynamics and potential long-term 
changes. 

This critique does not denigrate atmospheric modeling in any way or at any level, small or large. 
Rather it is more of a cautionary tale to reduce bombastic certitude and to add much-needed hu-
mility to the quantitative and qualitative analysis of the atmosphere. In the real world of heat and 
humidity, wind and pressure, land and sea, mountain and valley, no one knows with sufficient 
clarity the end of the climate story or even its subsequent chapters in the decades ahead. 

As the saying goes, “there are two sides to every story.” For the longest time the scary side with 
a cacophony of climate calamity had been the one pandered to students and the general public. 
But now it appears that, to the betterment of science and the serenity of society, the other side -- 
a less frightening, more realistic side -- of the complicated climate story is being given a fair 
public hearing. 
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