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“Abstract

Solar activity changes with time in a cyclic pattern. The origin of those changes may be caused
by planetary motion around the Sun, affecting the position of the Sun’s motion with respect to the
centre of mass and subjecting the Sun to changes in angular momentum and gravitational tidal
forces. With modern achievements, this multi-body problem can now be addressed in a construc-
tive way. Indeed, there are multiple criteria suggesting that the solar variability is driven by a
planetary beat also affecting a number of terrestrial variables: '*C and '°Be production, Earth’s
rotation, ocean circulation, paleoclimate, geomagnetism, etc. The centennial changes between
grand solar maxima and minima imply that we will soon be in a new solar minimum and, in
analogy with past events, probably also in Little Ice Age climatic conditions.
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1. Introduction

The geocentric model of the Universe can be regarded as the world’s first and oldest model. It
was presented in the middle of the 3rd century BC by Eudoxus of Cnidus and Aristotle. In the
fully developed Aristotelian system, the spherical Earth is at the centre of the universe, and all
other heavenly bodies (the Moon, Sun, planets and stars) are attached to 47— 56 transparent con-
centric spheres, which rotate around the Earth (at different uniform speeds to create the rotation
of bodies around the Earth). This model came to dominate science and Christian religion (where
it was even elevated to a dogma) for 1800 yr until Copernicus in 1543 revealed that it was all
totally wrong, and the Sun must be in the centre — the heliocentric concept was re-established. In
the three Keplerian laws, Kepler (1619) defined the planetary motions along very strict elliptical
paths. Still in 1633, Galilei faced inquisition for his belief in the heliocentric concept. In the 1970s,
it was realized (although suggested before; e.g. José, 1965) that the true centre of our planetary
system is the centre of mass (CM), which even the Sun has to move around in response to the
planetary beat (Landscheidt, 1976, 1979). The evolution in ruling concept over the last 2500 yr is
illustrated in Fig. 1.

Although Rudolf Wolf himself proposed that the sunspot cycle was driven by the impact from
Venus, the Earth, Jupiter and Saturn (Wolf, 1859) and this was further discussed by de la Rue et
al. (1872), it took a century until the planetary beat theory became seriously considered (e.g.
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Figure I: Changes in leading concepts of the centre of our planetary system (from Mérner, 2006).

Bureau and Craine, 1970; Wood, 1975; Kuklin, 1976; Morth and Schlamminger, 1979).

Others (e.g. Okal and Anderson, 1975) have reported the absence of any tidal effects from the
planets on the Sun, the solar orbital motions being another thing, however.

2. A multi-body problem

Our solar—planetary system is a perfect example of the multibody problem, which in principle
means that the interaction of all the bodies involved — the Sun, the planets, their moons — is un-
solvable with respect to gravitational interaction and individual motions.

Still, it was understood that this interaction might affect the solar activity (e.g. Morth and Schlam-
minger, 1979) as well as the Sun’s motion with respect to the centre of mass (e.g. José, 1965;
Landscheidt, 1976).

2.1 Qualitative approaches

Personally, I tried to express these effects in different qualitative ways (Morner, 1984a, Figs. 1
and 13; 1984b, 2013a) as illustrated in Fig. 2.

2.2 Extraterrestrial climate stress

Fairbridge (1984) formulated the situation as follows: Extraterrestrial climate stress is applied to
the planet Earth by four deterministic processes:

1. Planetary orbital motions, dominated by Jupiter and Saturn, transmit momentum by gravita-
tional torques, causing changes in velocity and spin rate to successive planets and the Sun itself.
On Earth, spin rate changes appear to trigger seismicity and volcanicity (and therefore dust veils).

2. The Sun accordingly develops its own mini-orbit around the systemic barycentre, with abrupt
changes in its acceleration and turning angle that are expressed in the 11 and 22 yr solar cycles of
sunspots, electromagnetic radiation of particles and particulate emission that reach the Earth and
beyond as the “solar wind”.

3. The Earth’s geomagnetic field is modulated by the solar wind, which triggers geochemical
reactions within the gases of the upper atmosphere.

4. Lunar tidal cycles, identified in many terrestrial climate series, develop standing waves in the
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Figure 2: Planetary beat on the Sun and the Earth (vightly the Earth—Moon system) and various lines by
which weather and climate may be affected (from Morner, 1984a)

atmosphere and help to trigger major seismic and volcanic events with contribution to the dust
veil. The 18.6 yr nodal periodicity also corresponds to a nutation of the precession parameter and
is commensurable in turn with the basic cycles of category 1.

2.3 Modern achievements

Obviously, we were on to something in the 1980s, but we could not yet quantify the effects. With
modern achievements in statistics and computer modelling, the situation has changed considera-
bly in theory (e.g. Wang, 1991; Diacu, 1996) as well as in practice (e.g. Scafetta, 2010, 2013a;
Abreu et al., 2012).

“Is there a chronometer hidden in the Sun”, Dicke asked (1978), and in opposition Wilson (2011)
asked: “Do periodic peaks in the planetary tidal forces acting upon the Sun influence the sunspot
cycle?”. I think we are now ready to say no to Dicke and yes to Wilson, and add the following: it
is an effect of the planetary beat acting upon the Sun.

3. The planetary beat

The multi-body interaction of the planetary motions on the Sun’s motion is so large that the Sun’s
motion around the centre of mass is perturbed by up to about 1 solar radius. The planetary beat
also includes the transfer of angular momentum and tidal forces (Fig. 2; further dealt with in this
volume; e.g. Jelbring, 2013; Solheim, 2013; Tattersall, 2013).

The motions of the Sun around the centre of mass — in response to the planetary beat — follow
cyclic pattern of 79 yr (Landscheidt, 1979) in close agreement with the main sunspot cycle over
the last 2200 yr (below; Jelbring, 1995), 179 yr (José, 1965; Fairbridge and Shirley, 1987; Char-
vatova, 1995) not really recorded in sunspot records (Jelbring, 1995; Abreu et al., 2012) and 2160
yr (Charvatova, 1995), which may relate to the somewhat unclear Hallstatt cycle of about 2400
yr (e.g. Vasiliev and Dergachev, 2002).

The 11 yr solar cycle is well synchronized with the alignment of Venus, Earth and Jupiter (Hung,
2007; cf. Wolf, 1859; Morth and Schlamminger, 1979; Wilson, 1987; Wilson et al., 2008; Scaf-
etta, 2010). According to Scafetta (2010) Jupiter, Saturn, Uranus and Neptune all modulate solar
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dynamics (cf. Morth and Schlamminger, 1979). According to Fairbridge (1984) and Fairbridge
and Sanders (1995a), the principle cycle generated by the planets is the Saturn—Jupiter lap of
19.857 yr. Scafetta (2010) showed that the orbital periods of Jupiter and Saturn generate signifi-
cant gravitational oscillation cycles of ~ 20 and ~ 60 yr. A 9.1 yr cycle refers to the Moon’s
orbital cycle (Scafetta, 2010). This, however, is also the cycle of solar flares according to Land-
scheidt (1984).

As for the longer term effects from Jupiter and Saturn, Scafetta (2012) finds “major beat periods”
of about 61, 115, 130 and 983 yr. Steinhilber et al. (2007) found major power peaks in the radio-
nuclides record of the last 9400 yr of 86, 207, 499 and 978 yr (cf. McCracken et al., 2013). Abreu
et al. (2012) “estimated the planetary torque exerted on the tachocline” and found peaks at 88,
104, 150, 208 and 506 yr, which all correlated well with similar peaks in the radionuclides record
of the last 9400 yr.

4. The solar variability

The variation in the solar activity is a well-established fact, and the solar—terrestrial linkage has
been addressed in numerous papers (Fairbridge and Sanders, 1995b). The Schwabe—Wolf (11 yr),
Hale (22 yr), Gleissberg (88 yr) and de Vries (208 yr) cycles have all become widely recognized;
their driving forces are still far from solved, however.

Observations of the changes in solar activity are limited to the last 400 yr. By considering a num-
ber of different indirect observations, Schove (1955) was able to extend the record back to 649
BC. Jelbring (1995) analysed Schove’s data from 300 BC up to 1990. He found the date to be “of
high quality concerning sunspot cycle length and phase information ... at least 2200 yr back in
time”. He identified seven cycles of 200, 133, 79, 50, 42, 33 and 29 yr length.

Because the intensity of the heliomagnetic field controls the galactic cosmic ray infall to the upper
atmosphere and hence the production of the '°Be and '*C radionuclides, the solar activity can be
reconstructed over 9400 yr or more by recording the variability of those isotopes in different
terrestrial time series (e.g. Bard et al., 2000; Solanki et al., 2004; Usoskin et al., 2007; Steinhilber
et al., 2007; Abreu et al., 2012; McCracken et al., 2013).

4.1 The planetary hypothesis

The idea that the planetary beat affects and controls the solar activity is old. Generally, it was held
that the impact was too small to drive solar variability. The planets may perturb the solar dynamo,
however, and the effects are then likely to become amplified by some internal mechanism (Abreu
etal., 2012; cf. Scafetta, 2012b).

Abreu et al. (2012; cf. Steinhilber et al., 2007) were able to show that there is an “excellent spec-
tral agreement between the planetary tidal effects acting on the tachocline and the solar magnetic
activity”. This is illustrated in Fig. 3. It implies a benchmark in the planetary—solar research. The
planetary hypothesis took an important step towards a planetary theory.

4.2 The tachocline

The tachocline (Spiegler and Zahn, 1992; Hughes et al., 2012) seems to be the sensitive zone
picking up and amplifying the planetary signals (as proposed by Abreu et al., 2012). The stratifi-
cation of the outer 50 % of the Sun is illustrated in Fig. 4. According to Scafetta (2012b), however,
the Sun may operate like a nuclear fusion reactor with the capacity of amplifying the planetary
tidal force signals.
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Figure 3: The planetary beat on the solar dynamo generates changes in the solar magnetic emission which
controls the galactic cosmic ray flux and hence the production of '*C and '°Be in the Earth’s upper atmos-
phere. The relations are evidenced by the good agreement in spectral peaks between planetary beat and
production of *C and 1°Be (as shown by Abreu et al., 2012; these relations are further discussed and
developed in Sect. 5.3).
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Figure 4: The tachocline at about one-third depth (~ 0.7) in the Sun separates the rigidly rotating inner
part from the differentially rotating and convecting outer part generating variations in sunspots and solar
flares, and the emission of solar wind

5. The terrestrial responses

Planet Earth and the coupled Earth-Moon system are affected by four different solar—planetary
variables, viz.

1. Transfer of heat (luminosity, irradiance) from the Sun to the Earth;
2. Solar wind interaction with the Earth’s magnetosphere (Morner, 1996a, 2012, 2013a);
3. Solar—planetary gravity interaction with the coupled Earth—-Moon system,;

4. Transfer of angular momentum to the coupled Earth—Moon system.
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Figure 5. Planetary beat affects the Earth and the Earth—Moon system via luminosity, solar wind, gravity
and momentum. Changes within the Earth—Moon system may also affect the Sun (as further discussed in
Sects. 5.4 and 5.6).

This is illustrated in Fig. 5 (cf. Fig. 2). The planetary beat may hence affect the Earth both directly
via its gravity pulse and indirectly via its effects on the solar dynamo. The 208 yr de Vries cycle
has been identified both in the terrestrial cosmogenic radionuclides (cf. above; Abreu et al., 2012)
and in the motions within the Earth—-Moon system (Wilson, 2013). Consequently, this gives evi-
dence of a twofold effect of the planetary beat; a direct gravity beat on the Earth—-Moon system,
and a simultaneous beat on the solar dynamo, which, via the solar wind controls of incoming
cosmic rays, also controls the production of cosmogenic radionuclides (Fig. 3).

5.1 Internal effects

The cyclic planetary beat affecting the Earth (Figs. 2 and 5) gives rise to a spectrum of different
processes within the Earth system. This is illustrated in Fig. 6, and has been separately addressed
before (Morner, 1984a, 1989b, 2010, 2011, 2012, 2013a).

The fact that there is a good correlation between changes in solar activity and changes in Earth’s
rate of rotation (LOD- length of day) can hardly be understood in other ways than that Earth’s
spin rate is strongly controlled by the interaction between the solar wind and the magnetosphere
(Morner, 1996a, 2010, 2012, 2013a). This is illustrated in Fig. 6 indicating that variations in solar
wind (initiated by the planetary beat) affect the shielding (in-fall of cosmic rays), the geomagnetic
field strength, the pressure, the gravity and the rotation.

The causation chain — solar wind variations, interaction with the magnetosphere, changes in the
Earth’s rate of rotation and effects on the ocean circulation — plays a central role according to the
present author (Morner, 1996a, 2010, 2011, 2012, 2013a).

5.2 Geomagnetic field changes

The strength of the magnetospheric field surrounding planet Earth is the combined effect of the
interaction of the helio-magnetic field (the solar wind) and the Earth’s own internal geomagnetic
field. Consequently, it has both an internal and an external component, which together control the
deflection of cosmic rays and hence the production of '*C and '°Be in the atmosphere (as illus-
trated in Fig. 6 of Morner, 1984b).

Therefore, some of the peaks in '*C production and infall of '’Be may have an internal origin and
hence may not represent a solar activity signal. This should be considered in the spectral analyses
of cosmogenic radionuclides (Fig. 3).

The strong "“C peak at 2700 BP, for example, seems to be the direct effect of an internal geomag-
netic anomaly (Mdrner, 2003). This may well be the case with some of the other peaks, too: for
example at 1000—1100 AD when there was a trans-polar geomagnetic shift (Morner, 1991) and a
major change in rotation and ocean circulation (Mdrner, 1995).
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Figure 6. Planetary beat processes and the spectrum of terrestrial variables affected (from Morner,
2012).

Therefore, it is interesting to note that Nilsson et al. (2011) determined a 1350 yr cyclicity in the
Earth’s geomagnetic dipole tilt over the last 9000 yr. This cycle peaked at 2650 BP —i.e. virtually
just at the above-mentioned "“C peak and geomagnetic anomaly (Mdrner, 2003). Furthermore,
there is a close correlation of the dipole tilt and the changes in rotation during the last 3000 yr
(Nilsson et al., 2011), indicating that we are dealing with a differential rotation (Fig. 9; cf. Morner,
1984a, 1996a) between the core and the mantle. The finding that there are two preferential dipole
regions in northwestern Russia and northern Canada is consistent with the observation of flux
tubes in the core and trans-polar VGP (virtual geomagnetic pole) shift indicating the displacement
of the symmetry axis of two rotating bodies (Mdrner, 1991).

Neither the '°Be, the '*C, nor the planetary beat have any peaks at around this 1350 yr cycle
(McCracken et al., 2013; Tattersall, 2013) indicating that this cycle refers to an internal terrestrial
cycle (as suggested by Nilsson et al., 2011). Therefore, these cyclic changes should be removed
from the terrestrial cosmogenic nuclide records when trying to reconstruct solar variability from
those records (e.g. Bard et al., 2000; Usoskin et al., 2007; Abreu et al., 2012; McCracken et al.,
2013).

5.3 Production of cosmogenic radionuclides

The production of '“C and '“Be is a function of the amount of cosmic rays reaching the upper
atmosphere. Variations in '*C content in the atmosphere are measured in the deviation between
absolute dendrochronological ages and relative radio-carbon ages, known with high accuracy for
the last 9500 yr and with reasonable accuracy for the last 12 000 yr. The '°Be content is distributed
with precipitation, and its variations are recorded in ice cores, sediment cores, speleothems, etc.

It has often been assumed that the concentration of cosmogenic nuclides is a virtually direct func-
tion of solar variability (e.g. Bard et al., 2000; Solanki et al., 2004; Usoskin et al., 2007; Steinhil-
ber et al., 2007; Abreu et al., 2012; McCracken et al., 2013). This is not the case, however.

The production of '*C in the upper atmosphere is a function of the amount of cosmic rays being
able to penetrate the magnetosphere, where the variations in shielding capacity are driven both by
the solar wind (Sect. 4.1) and the Earth’s own geodynamo (Sect. 5.2). This implies a double
origin. Furthermore, the concentration of '*C is also affected by the ocean/air ventilation and in-
terchange of isotopes. This implies a third mode of origin. This is illustrated in Fig. 7.
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Figure 7. lllustration of the three factors controlling the 14C pro-duction and concentration. Not until
each factor is quantified, do we have a clear record of the solar variability.

The production of '’Be is a function solar wind and Earth’s geodynamo. Its concentration in ter-
restrial records is strongly controlled by precipitation. Therefore, not even '°Be is a direct measure
of changes in solar activity; it is only a proxy.

Therefore, the terrestrial records of '*C and '°Be variations must be split up into their different
causation components before they can be used as true records of solar variability and analysed
with respect to cyclic behaviour; if not, they only provide relative proxies.

5.4 The Earth—Moon distance

The Earth and the Moon constitute a double planet system in its motions with respect to each
other and with respect to the Sun and the other planets of our solar system (i.e. a multi-body
system as discussed above). The barycentre in the Earth—-Moon system is located in the Earth’s
mantle at a depth of about 1700 km below the surface.

The Earth’s rate of rotation is constantly changing. These changes must be compensated in the
Earth—Moon distance (Dicke, 1966) or by interchange of angular momentum within the terrestrial
system (Morner, 1984a, 1987, 1989b, 1996a).

Dicke (1966) showed that the postglacial sea level rise after the last glaciation had to lead to a
general deceleration, which had to be compensated for within the Earth-Moon system by an in-
creased distance between the two bodies. Therefore, Morner (1995) transferred the sea level curve
of the last 30 000 yr into a curve of the changes in Earth’s rate of rotation: a speed-up at the build-
up of the 20 ka glaciation maximum and sea level fall to a maximum speed of an about 1800 ms
higher speed at the glaciation maximum when sea level was about 120 m lower than today, and a
deceleration during the sea level rise in response to the glacial melting from about 18 000 to 6000
C14 yr BP (about 22 000 to 6800 cal. yr BP). These changes had, of course, to be compensated
in the Earth-Moon distance to keep the total momentum constant. When this general deceleration
had finished, the Earth came into another mode dominated by regular interchanges of angular
momentum between the Earth and the hydrosphere (Mdrner, 1984a, 1987, 1988, 1995, 1996a,
2013a).

The general glacial eustatic rise in sea level can be approximated by two superposed exponential
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Figure 8: The strong ocean current changes in the Atlantic (middle) and in the Pacific (sides) in association
with the BO/AL and YD high-amplitude changes in climate (based on Mdorner, 1996b). These changes must
be coupled with corresponding interchanges of angular momentum between the solid Earth and the hydro-
sphere (Morner, 1993).

curves (Morner and Rickard, 1974). During the transitional period 13—10 C14 ka BP or 16-11.5
cal. ka BP, a sequence of extreme events occurred (Morner, 1993): the geomagnetic pole made a
sudden trans-polar shift, the onset of central uplift of Fennoscandia indicating a deformation of
the gravitational potential surface; climate first underwent a sudden high-amplitude amelioration
with a sudden swing of the Gulf Stream high up into the northeast Atlantic reaching into the
Barents Sea, and then a high-amplitude cooling (the well-known Younger Dryas (YD) event) with
extensive glacial expansion, a polar-front displacement to mid-Portugal and with large distances
deflections of the Gulf Stream as well as the Kuro Siwo Current towards the Equator (Fig. 8).
These changes are far too large and rapid to be understood in terms of solar variability itself.

Therefore, Morner (1993) proposed that it perhaps might be understood in terms of the strong de-
celeration and a delay in its compensation in the Earth—Moon system, so that it instead had to be
compensated by anomalous displacements of the water masses: first to high latitudes (generating
the Bolling-Allerdd warm phase — BO/AL) and then to low latitudes (generating the Younger
Dryas cold phase). Therefore, the high-amplitude changes at around 13— 10 C14 ka BP appear
like the beat on a cord (Morner, 1993).

The high-amplitude changes of the BO/AL warm period and the YD cold period are also recorded
in the production of '*C (e.g. Hughen et al., 2000; Muscheler et al., 2008). The BO/AL period has
a low '*C production due to strong shielding and high solar activity, whilst the YD period has a
high "C production due to weak shielding and low solar activity (as illustrated in Fig. 7). This
implies that changes in solar activity are involved in the climatic changes of the BO/AL and YD
periods. Therefore, it seems we are facing a double origin — an internal and an external — of the
high-amplitude changes within the period 16—11.5 cal. ka BP.

The question now arises of weather we can combine the internal and external factors. Indeed,
Jelbring (2013) has proposed that changes in the Earth—-Moon system may affect the solar activity.
This opens the possibility of a cause-response relationship as follows: changes in the Earth’s
rotation affect the Earth—-Moon system (and related parameters), which affects the solar activity.

5.5 Earth’s differential rotation

The Earth consists of many different layers and sub-layers, which may move with respect to each
other (Mdrner, 1984a, 1987, 1988, 1996a), which, in principles, act as a multi-body system (cf.
Sect. 2).

First of all, it is an interchange of momentum between different layers (Fig. 9) where one speed-
up has to be compensated by another slow-down in order to keep the total angular momentum
constant. | have made much effort on the interchange of angular momentum between the hydro-
sphere (the ocean circulation) and the solid Earth, which strongly affects regional sea level (the
redistribution of water masses) and climate (the redistribution of ocean-stored heat). This is well
recorded in the El Nifio—Southern Oscillation changes (Morner, 1988, 1989b, 1996a, 2012), in
the climatic—eustatic 60 yr cycle (cf. below; Sect. 5.7), in the atmosphere/ocean 60 yr changes
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Figure 9: The Earth consists of several layers and sub-layers, which experience differential rotation with
interchange of angular momentum (Morner, 1984a, 1987, 1989b). Ocean circulation changes generate sea
level changes and changes in climate (Morner, 1989b, 1995, 2010, 2013a). Differential rotation is partly
generated from internal sources (feedback interchange of angular momentum) and partly from external
sources (gravitational and rotational impact from the Sun, the planets and from the Moon).

(Wyatt and Curry, 2013), and the general centennial changes in ocean circulation (Morner, 1984a,
1995, 1996a, 2010). Differential rotation between the core and the mantle has been discussed by
several authors (e.g. Hide, 1970; Cortillot et al., 1978; Morner, 1980; Braginskiy, 1982; Roberts
et al., 2007; Livermore et al., 2013).

An excellent and direct example of the interchange of angular momentum between the solid Earth
(LOD) and the hydrosphere comes from the 2004 Sumatra earthquake and tsunami in the Indian
Ocean. In response to the tsunami wave, the solid Earth speeded up by 2.68 ms. Similarly, at the
2011 Japan earthquake the Earth speeded up by 1.8 ms.

Secondly, this internal multi-layer system, of course, sensitively picks up gravitational and rota-
tional signals from the from the Sun, the planets and the Moon as illustrated in Figs. 5 and 6.

5.6 The Sun—Earth distance

The postglacial sea level rise and linked general rotational deceleration must be compensated as
discussed above (Sect. 5.4). It should also be compensated in Earth’s orbital velocity and/or the
Sun—Earth distance (Morner, 1984b, Fig. 4). According to Mdrner “one may therefore hypothe-
size that the Earth’s climate could be strongly influenced by this in some sort of feed-back mech-
anism” as illustrated in Fig. 10.

Glaciation Expansion Melting
Sea level Lowering Rise
Earth’s rotational Speeding up owing down
Earth-Moon distance Shorter Larger
Earth-Sun distance Shorter Larger
Global climate Warming Cooling
Earth’s conditions Interglacial Ice Age

Figure 10. Hypothetical chain effects of changes in glaciation, sea level and rotation, and their effects on
Earth’s rotation and by that the Sun—Earth distance (Mdrner, 1984b).
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Figure 11. Three ways of affecting Earth’s climate all ultimately driven by planetary beat cycles (slightly
modified from Mérner, 2010, 2011).

Even if the glacial/interglacial alterations are primarily driven by the Milankovitch variables (e.g.
Roe, 2007), the Fig. 10 mechanism may imply an additional effect to account for in the Sun—Earth
and planetary—Earth interactions, and hence merit at least mentioning in this volume.

5.7 Climatic changes

Without the constant heat energy supply from the Sun (the luminosity or irradiance), there would
have been no life on planet Earth. The variations in solar activity seem to follow strict cyclic
patterns. The driving forces for those cycles seem to be found in the planetary beat.

An alternative way of affecting Earth’s climate is the multiple effects of the solar wind interaction
with the magnetosphere, and, not least, its effects on Earth’s rate of rotation and by that the ocean
circulation (Mdrner, 1996a, 2010, 2011, 2012, 2013a).

A third way of affecting climate is via the cloud formation as a function of cosmic ray flux (Svens-
mark, 1998, 2007; Svensmark et al., 2013).

These three ways of affecting Earth’s climate are illustrated in Fig. 11.

According to Scafetta (2010, 2013a), the beat of Jupiter and Saturn generates a 60 yr cycle, which
is also present in global temperature records (close to the 65—70 yr global temperature cycle of
Schlesinger and Ramankutty, 1994). The 60 yr cycle is recorded in the atmospheric circulation
(Mazzarella, 2007; Wyatt and Curry, 2013), different oceanic parameters (in ocean circulation by
Morner, 2010, 2013a; in the Gulf Stream beat by Mdrner, 2010, 2013a; in Barents Sea fish catch
by Klyashtorin et al., 2009; in sea level changes by Chambers et al., 2012; Morner, 2013b; Parker,
2013 and Scafetta, 2013b), in climate (e.g. Akasofu, 2013), in rotation (e.g. Mazzarella, 2007)
and in geomagnetics (Braginskiy, 1982; Roberts et al., 2007). This cycle is not present in the
cosmogenic radionuclide records, however (Abreu et al., 2012, Fig. 5). Therefore, its origin may
be a direct gravitational effect on the Earth—Moon system and the differential rotation of the Earth
(Figs. 5—6; Morner, 1884a, 2013a), rather than an effect of solar wind interaction with the Earth’s
magnetosphere. In the power spectrum of the cosmogenic changes according to Bard et al. (2000),
there is a peak at 63—66 yr (Scafetta, 2012a), implying that a solar wind origin cannot be ruled
out, however.
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5.8 Grand minima

At the Sporer, Maunder and Dalton solar minima, the Earth experienced a rotational speed-up
(decreased LOD), a deflection of the Gulf Stream to its southern course and a south-ward pene-
tration of Arctic water all the way down to mid-Portugal (Mdrner, 1995, 2010, 2011). This gen-
erated Little Ice Age conditions in the Arctic, northern Atlantic and north-west Europe. At around
2030-2050, we will be in a new grand minimum situation (as evidenced by a large number of
authors: e.g. Morner, 2010, 2011; Cionco and Compagnucci, 2012; Casey and Humlum, 2013;
Salvador, 2013). The driving forces seem to be the planetary beat and its effects on the solar
activity, and the effects of the solar wind upon the Earth (Fig. 6). During previous solar minima,
the Earth experienced Little Ice Age climatic conditions. Therefore, we may once again experi-
ence such climatic conditions when the new grand minimum occurs (Mdrner, 2010, 2011).

6. Conclusions

The planetary motion generates a beat on the Sun in the form of gravity (tidal force), angular
momentum and motions with respect to the centre of mass. This beat generates cyclic changes in
the Sun’s activity. The sensitive zone in the Sun is likely to be the tachocline.

The changes in solar activity control the solar luminosity (irradiance) and solar wind emission,
both factors of which affect the Earth as illustrated in Figs. 6 and 11.

The planetary beat also affects the Earth—Moon system directly via tidal forces and angular mo-
mentum.

The correlation between changes in solar activity and Earth’s rate of rotation (LOD) seems pri-
marily to be a function of the solar wind interaction with the magnetosphere.

At the next solar minimum, to occur around 2030-2050, there might be a return to Little Ice Age
climatic conditions (as was the case during the Dalton, Maunder and Spérer minima).

The planetary beat hypothesis has become a theory. There is, of course, much more to learn,
decode and improve, but the theory is here to stay.

Editor: S.-A. Ouadfeul. Reviewers: J.-E. Solheim and one anonymous referee
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